These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21460827)

  • 1. Scalable nanostructured membranes for solid-oxide fuel cells.
    Tsuchiya M; Lai BK; Ramanathan S
    Nat Nanotechnol; 2011 May; 6(5):282-6. PubMed ID: 21460827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface proximity effects on ionic conductivity in nanoscale oxide-ion conducting yttria stabilized zirconia: an atomistic simulation study.
    Sankaranarayanan SK; Ramanathan S
    J Chem Phys; 2011 Feb; 134(6):064703. PubMed ID: 21322717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extremely thin bilayer electrolyte for solid oxide fuel cells (SOFCs) fabricated by chemical solution deposition (CSD).
    Oh EO; Whang CM; Lee YR; Park SY; Prasad DH; Yoon KJ; Son JW; Lee JH; Lee HW
    Adv Mater; 2012 Jul; 24(25):3373-7. PubMed ID: 22648864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional nanostructured bilayer solid oxide fuel cell with 1.3 W/cm(2) at 450 °C.
    An J; Kim YB; Park J; Gür TM; Prinz FB
    Nano Lett; 2013 Sep; 13(9):4551-5. PubMed ID: 23977845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia.
    van Duin AC; Merinov BV; Jang SS; Goddard WA
    J Phys Chem A; 2008 Apr; 112(14):3133-40. PubMed ID: 18348544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and electrochemical performances of LiNiCuZn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell.
    Jing Y; Qin H; Liu Q; Singh M; Zhu B
    J Nanosci Nanotechnol; 2012 Jun; 12(6):5102-5. PubMed ID: 22905585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode.
    Zhang X; Liu L; Zhao Z; Tu B; Ou D; Cui D; Wei X; Chen X; Cheng M
    Nano Lett; 2015 Mar; 15(3):1703-9. PubMed ID: 25686380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing oxide ion incorporation kinetics by nanoscale Yttria-doped ceria interlayers.
    Fan Z; Prinz FB
    Nano Lett; 2011 Jun; 11(6):2202-5. PubMed ID: 21563786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition.
    Gong Y; Palacio D; Song X; Patel RL; Liang X; Zhao X; Goodenough JB; Huang K
    Nano Lett; 2013 Sep; 13(9):4340-5. PubMed ID: 23924170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells.
    Fan L; Wang C; Di J; Chen M; Zheng J; Zhu B
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4941-5. PubMed ID: 22905555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells.
    Da Han ; Liu X; Zeng F; Qian J; Wu T; Zhan Z
    Sci Rep; 2012; 2():462. PubMed ID: 22708057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoceramic oxide hybrid electrolyte membranes for proton exchange membrane fuel cells.
    Xu F; Mu S
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1169-80. PubMed ID: 24749420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards the next generation of solid oxide fuel cells operating below 600 °c with chemically stable proton-conducting electrolytes.
    Fabbri E; Bi L; Pergolesi D; Traversa E
    Adv Mater; 2012 Jan; 24(2):195-208. PubMed ID: 21953861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Temperature Fabrication of Nanostructured Yttria-Stabilized-Zirconia (YSZ) Scaffolds by In Situ Carbon Templating Xerogels.
    Muhoza SP; Cottam MA; Gross MD
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28447983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Stable Sr-Free Cobaltite-Based Perovskite Cathodes Directly Assembled on a Barrier-Layer-Free Y
    Ai N; Li N; Rickard WD; Cheng Y; Chen K; Jiang SP
    ChemSusChem; 2017 Mar; 10(5):993-1003. PubMed ID: 28220997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of YSZ-TZP solid electrolytes by gel-casting technology.
    Li G; Ren R
    J Environ Sci (China); 2011 Jun; 23 Suppl():S170-2. PubMed ID: 25084586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells.
    Wang W; Su C; Ran R; Zhao B; Shao Z; Tade MO; Liu S
    ChemSusChem; 2014 Jun; 7(6):1719-28. PubMed ID: 24798121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput measurement of ionic conductivity in composition-spread thin films.
    Duan H; Yuan CC; Becerra N; Small LJ; Chang A; Gregoire JM; van Dover RB
    ACS Comb Sci; 2013 Jun; 15(6):273-7. PubMed ID: 23642495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and electrical properties of NASICON type solid electrolyte nanoscaled glass-ceramic powder by mechanical milling for thin film batteries.
    Patil V; Patil A; Yoon SJ; Choi JW
    J Nanosci Nanotechnol; 2013 May; 13(5):3665-8. PubMed ID: 23858924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocrystal Engineering of Thin-Film Yttria-Stabilized Zirconia Electrolytes for Low-Temperature Solid-Oxide Fuel Cells.
    Ryu S; Choi IW; Kim YJ; Lee S; Jeong W; Yu W; Cho GY; Cha SW
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42659-42666. PubMed ID: 37665642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.