These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 21460850)
1. TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1. Jin HO; Seo SK; Kim YS; Woo SH; Lee KH; Yi JY; Lee SJ; Choe TB; Lee JH; An S; Hong SI; Park IC Oncogene; 2011 Sep; 30(35):3792-801. PubMed ID: 21460850 [TBL] [Abstract][Full Text] [Related]
2. Activating transcription factor 4 and CCAAT/enhancer-binding protein-beta negatively regulate the mammalian target of rapamycin via Redd1 expression in response to oxidative and endoplasmic reticulum stress. Jin HO; Seo SK; Woo SH; Kim ES; Lee HC; Yoo DH; An S; Choe TB; Lee SJ; Hong SI; Rhee CH; Kim JI; Park IC Free Radic Biol Med; 2009 Apr; 46(8):1158-67. PubMed ID: 19439225 [TBL] [Abstract][Full Text] [Related]
3. Redd1 inhibits the invasiveness of non-small cell lung cancer cells. Jin HO; Seo SK; Woo SH; Kim YS; Hong SE; Yi JY; Noh WC; Kim EK; Lee JK; Hong SI; Choe TB; Park IC Biochem Biophys Res Commun; 2011 Apr; 407(3):507-11. PubMed ID: 21414293 [TBL] [Abstract][Full Text] [Related]
4. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Ben Sahra I; Regazzetti C; Robert G; Laurent K; Le Marchand-Brustel Y; Auberger P; Tanti JF; Giorgetti-Peraldi S; Bost F Cancer Res; 2011 Jul; 71(13):4366-72. PubMed ID: 21540236 [TBL] [Abstract][Full Text] [Related]
5. Sorafenib induces apoptotic cell death in human non-small cell lung cancer cells by down-regulating mammalian target of rapamycin (mTOR)-dependent survivin expression. Kim YS; Jin HO; Seo SK; Woo SH; Choe TB; An S; Hong SI; Lee SJ; Lee KH; Park IC Biochem Pharmacol; 2011 Aug; 82(3):216-26. PubMed ID: 21601561 [TBL] [Abstract][Full Text] [Related]
6. SP600125 negatively regulates the mammalian target of rapamycin via ATF4-induced Redd1 expression. Jin HO; Seo SK; Woo SH; Kim ES; Lee HC; Yoo DH; Choe TB; Hong SI; Kim JI; Park IC FEBS Lett; 2009 Jan; 583(1):123-7. PubMed ID: 19059405 [TBL] [Abstract][Full Text] [Related]
7. Regulation of mTOR and cell growth in response to energy stress by REDD1. Sofer A; Lei K; Johannessen CM; Ellisen LW Mol Cell Biol; 2005 Jul; 25(14):5834-45. PubMed ID: 15988001 [TBL] [Abstract][Full Text] [Related]
8. Zoledronic acid-induced cytotoxicity through endoplasmic reticulum stress triggered REDD1-mTOR pathway in breast cancer cells. Lan YC; Chang CL; Sung MT; Yin PH; Hsu CC; Wang KC; Lee HC; Tseng LM; Chi CW Anticancer Res; 2013 Sep; 33(9):3807-14. PubMed ID: 24023313 [TBL] [Abstract][Full Text] [Related]
9. Mechanistic target of rapamycin (mTOR) dependent regulation of thioredoxin interacting protein (TXNIP) transcription in hypoxia. Wong RW; Hagen T Biochem Biophys Res Commun; 2013 Mar; 433(1):40-6. PubMed ID: 23454121 [TBL] [Abstract][Full Text] [Related]
10. Nuclear factor of activated T-cell c3 inhibition of mammalian target of rapamycin signaling through induction of regulated in development and DNA damage response 1 in human intestinal cells. Zhou Y; Wang Q; Guo Z; Weiss HL; Evers BM Mol Biol Cell; 2012 Aug; 23(15):2963-72. PubMed ID: 22696685 [TBL] [Abstract][Full Text] [Related]
11. Fatty acid synthase inhibition engages a novel caspase-2 regulatory mechanism to induce ovarian cancer cell death. Yang CS; Matsuura K; Huang NJ; Robeson AC; Huang B; Zhang L; Kornbluth S Oncogene; 2015 Jun; 34(25):3264-72. PubMed ID: 25151963 [TBL] [Abstract][Full Text] [Related]
12. Hypoxia-induced regulation of mTOR signaling by miR-7 targeting REDD1. Seong M; Lee J; Kang H J Cell Biochem; 2019 Mar; 120(3):4523-4532. PubMed ID: 30302791 [TBL] [Abstract][Full Text] [Related]
13. Interleukin-6 influences stress-signalling by reducing the expression of the mTOR-inhibitor REDD1 in a STAT3-dependent manner. Pinno J; Bongartz H; Klepsch O; Wundrack N; Poli V; Schaper F; Dittrich A Cell Signal; 2016 Aug; 28(8):907-16. PubMed ID: 27094713 [TBL] [Abstract][Full Text] [Related]
15. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Marzec M; Kasprzycka M; Liu X; El-Salem M; Halasa K; Raghunath PN; Bucki R; Wlodarski P; Wasik MA Oncogene; 2007 Aug; 26(38):5606-14. PubMed ID: 17353907 [TBL] [Abstract][Full Text] [Related]
16. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Brugarolas J; Lei K; Hurley RL; Manning BD; Reiling JH; Hafen E; Witters LA; Ellisen LW; Kaelin WG Genes Dev; 2004 Dec; 18(23):2893-904. PubMed ID: 15545625 [TBL] [Abstract][Full Text] [Related]
17. Growth control under stress: mTOR regulation through the REDD1-TSC pathway. Ellisen LW Cell Cycle; 2005 Nov; 4(11):1500-02. PubMed ID: 16258273 [TBL] [Abstract][Full Text] [Related]
18. The mammalian target of rapamycin-signaling pathway in regulating metabolism and growth. Yang X; Yang C; Farberman A; Rideout TC; de Lange CF; France J; Fan MZ J Anim Sci; 2008 Apr; 86(14 Suppl):E36-50. PubMed ID: 17998426 [TBL] [Abstract][Full Text] [Related]
19. Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase. Avruch J; Hara K; Lin Y; Liu M; Long X; Ortiz-Vega S; Yonezawa K Oncogene; 2006 Oct; 25(48):6361-72. PubMed ID: 17041622 [TBL] [Abstract][Full Text] [Related]
20. Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/REDD1 signaling axis in head and neck squamous cell carcinoma. Schneider A; Younis RH; Gutkind JS Neoplasia; 2008 Nov; 10(11):1295-302. PubMed ID: 18953439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]