These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 21460972)

  • 1. High-performance antireflective coatings with a porous nanoparticle layer for visible wavelengths.
    Murata T; Ishizawa H; Tanaka A
    Appl Opt; 2011 Mar; 50(9):C403-7. PubMed ID: 21460972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally stable antireflective coatings based on nanoporous organosilicate thin films.
    Kim S; Cho J; Char K
    Langmuir; 2007 Jun; 23(12):6737-43. PubMed ID: 17477553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solgel derived tantalum pentoxide films as ultraviolet antireflective coatings for silicon.
    Rehg TJ; Ochoa-Tapia JA; Knoesen A; Higgins BG
    Appl Opt; 1989 Dec; 28(24):5215-21. PubMed ID: 20556030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of high-performance optical coatings with fluoride nanoparticle films made from autoclaved sols.
    Murata T; Ishizawa H; Motoyama I; Tanaka A
    Appl Opt; 2006 Mar; 45(7):1465-8. PubMed ID: 16539251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layer-by-layer assembled films of cellulose nanowires with antireflective properties.
    Podsiadlo P; Sui L; Elkasabi Y; Burgardt P; Lee J; Miryala A; Kusumaatmaja W; Carman MR; Shtein M; Kieffer J; Lahann J; Kotov NA
    Langmuir; 2007 Jul; 23(15):7901-6. PubMed ID: 17585790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically stable antireflection and antifogging coatings fabricated by the layer-by-layer deposition process and postcalcination.
    Zhang L; Li Y; Sun J; Shen J
    Langmuir; 2008 Oct; 24(19):10851-7. PubMed ID: 18767828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double-layer broadband antireflection coatings for grazing incidence angles.
    Monga JC
    Appl Opt; 1992 Feb; 31(4):546-53. PubMed ID: 20720648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous anodic alumina with low refractive index for broadband graded-index antireflection coatings.
    Chen J; Wang B; Yang Y; Shi Y; Xu G; Cui P
    Appl Opt; 2012 Oct; 51(28):6839-43. PubMed ID: 23033100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultralow refractive index coatings consisting of mesoporous silica nanoparticles.
    Yamaguchi M; Nakayama H; Yamada K; Imai H
    Opt Lett; 2009 Jul; 34(13):2060-2. PubMed ID: 19571999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness.
    Berman D; Guha S; Lee B; Elam JW; Darling SB; Shevchenko EV
    ACS Nano; 2017 Mar; 11(3):2521-2530. PubMed ID: 28139905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates.
    Du Y; Luna LE; Tan WS; Rubner MF; Cohen RE
    ACS Nano; 2010 Jul; 4(7):4308-16. PubMed ID: 20536211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hollow Rodlike MgF
    Bao L; Ji Z; Wang H; Chen R
    Langmuir; 2017 Jun; 33(25):6240-6247. PubMed ID: 28602095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antireflective coatings with adjustable refractive index and porosity synthesized by micelle-templated deposition of MgF2 sol particles.
    Bernsmeier D; Polte J; Ortel E; Krahl T; Kemnitz E; Kraehnert R
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19559-65. PubMed ID: 25372504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance optimization of 193 nm antireflective coatings with wide incident angle ranges on strongly curved spherical substrates.
    Liu C; Kong M; Li B
    Opt Express; 2018 Jul; 26(15):19524-19533. PubMed ID: 30114123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-by-layer fabrication of broad-band superhydrophobic antireflection coatings in near-infrared region.
    Zhang L; Li Y; Sun J; Shen J
    J Colloid Interface Sci; 2008 Mar; 319(1):302-8. PubMed ID: 18068180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations of porous oxides as an antireflective coating for glass surfaces.
    Yoldas BE
    Appl Opt; 1980 May; 19(9):1425-9. PubMed ID: 20221053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antireflective coatings applied from metal-organic derived liquid precursors.
    Yoldas BE; O'Keeffe TW
    Appl Opt; 1979 Sep; 18(18):3133-8. PubMed ID: 20212817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance, single-layer antireflective optical coatings comprising mesoporous silica nanoparticles.
    Moghal J; Kobler J; Sauer J; Best J; Gardener M; Watt AA; Wakefield G
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):854-9. PubMed ID: 22188238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films.
    Joo W; Kim HJ; Kim JK
    Langmuir; 2010 Apr; 26(7):5110-4. PubMed ID: 19957944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and realization of antireflection coatings for the visible and the infrared based on mesoporous SiO
    Zhao W; Jia H; Wang Y; Wang Q; Wu H; Wang B
    Appl Opt; 2019 Mar; 58(9):2385-2392. PubMed ID: 31044940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.