These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21461398)

  • 21. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity.
    Akhtar S; Benter I
    Adv Drug Deliv Rev; 2007 Mar; 59(2-3):164-82. PubMed ID: 17481774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Branched RNA nanostructures for RNA interference.
    Nakashima Y; Abe H; Abe N; Aikawa K; Ito Y
    Chem Commun (Camb); 2011 Aug; 47(29):8367-9. PubMed ID: 21691656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens.
    Hsieh AC; Bo R; Manola J; Vazquez F; Bare O; Khvorova A; Scaringe S; Sellers WR
    Nucleic Acids Res; 2004; 32(3):893-901. PubMed ID: 14769947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of allele-specific gene silencing by RNA interference with mutant and wild-type reporter alleles.
    Ohnishi Y; Tokunaga K; Kaneko K; Hohjoh H
    J RNAi Gene Silencing; 2006 Feb; 2(1):154-60. PubMed ID: 19771217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Delivery strategies for siRNA-mediated gene silencing.
    Gilmore IR; Fox SP; Hollins AJ; Akhtar S
    Curr Drug Deliv; 2006 Apr; 3(2):147-5. PubMed ID: 16611001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improvements in siRNA properties mediated by 2'-deoxy-2'-fluoro-beta-D-arabinonucleic acid (FANA).
    Dowler T; Bergeron D; Tedeschi AL; Paquet L; Ferrari N; Damha MJ
    Nucleic Acids Res; 2006; 34(6):1669-75. PubMed ID: 16554553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection.
    Sano M; Sierant M; Miyagishi M; Nakanishi M; Takagi Y; Sutou S
    Nucleic Acids Res; 2008 Oct; 36(18):5812-21. PubMed ID: 18782830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering of Solid Dosage Forms of siRNA-Loaded Lipidoid-Polymer Hybrid Nanoparticles Using a Quality-by-Design Approach.
    Lokras A; Foged C; Thakur A
    Methods Mol Biol; 2021; 2282():137-157. PubMed ID: 33928574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective modification of HK peptides enhances siRNA silencing of tumor targets in vivo.
    Chou ST; Leng Q; Scaria P; Woodle M; Mixson AJ
    Cancer Gene Ther; 2011 Oct; 18(10):707-16. PubMed ID: 21818135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of RNAi activity by improved siRNA duplexes.
    Hohjoh H
    FEBS Lett; 2004 Jan; 557(1-3):193-8. PubMed ID: 14741366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amide-Modified RNA: Using Protein Backbone to Modulate Function of Short Interfering RNAs.
    Kotikam V; Rozners E
    Acc Chem Res; 2020 Sep; 53(9):1782-1790. PubMed ID: 32658452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene silencing by 2'-O-methyldithiomethyl-modified siRNA, a prodrug-type siRNA responsive to reducing environment.
    Ochi Y; Imai M; Nakagawa O; Hayashi J; Wada SI; Urata H
    Bioorg Med Chem Lett; 2016 Feb; 26(3):845-848. PubMed ID: 26755395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of Site-Specifically Phosphate-Caged siRNAs.
    Wu L; Wang J; Tang X
    Curr Protoc Nucleic Acid Chem; 2015 Jun; 61():6.12.1-6.12.15. PubMed ID: 26344229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi.
    Ohnishi Y; Tamura Y; Yoshida M; Tokunaga K; Hohjoh H
    PLoS One; 2008 May; 3(5):e2248. PubMed ID: 18493311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioreducible branched poly(modified nona-arginine) cell-penetrating peptide as a novel gene delivery platform.
    Yoo J; Lee D; Gujrati V; Rejinold NS; Lekshmi KM; Uthaman S; Jeong C; Park IK; Jon S; Kim YC
    J Control Release; 2017 Jan; 246():142-154. PubMed ID: 27170226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.
    Kulkarni JA; Witzigmann D; Chen S; Cullis PR; van der Meel R
    Acc Chem Res; 2019 Sep; 52(9):2435-2444. PubMed ID: 31397996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. State-of-the-art modified RNAi compounds for therapeutics.
    Carstea ED; Hough S; Wiederholt K; Welch PJ
    IDrugs; 2005 Aug; 8(8):642-7. PubMed ID: 16044372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual-target gene silencing by using long, synthetic siRNA duplexes without triggering antiviral responses.
    Chang CI; Kang HS; Ban C; Kim S; Lee DK
    Mol Cells; 2009 Jun; 27(6):689-95. PubMed ID: 19533030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual TNF-α/Cyclin D1 Gene Silencing With an Oral Polymeric Microparticle System as a Novel Strategy for the Treatment of Inflammatory Bowel Disease.
    Kriegel C; Amiji MM
    Clin Transl Gastroenterol; 2011 Mar; 2(3):e2. PubMed ID: 23237848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RETRACTED: Small RNA duplexes function as mobile silencing signals between plant cells.
    Dunoyer P; Schott G; Himber C; Meyer D; Takeda A; Carrington JC; Voinnet O
    Science; 2010 May; 328(5980):912-6. PubMed ID: 20413458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.