These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 21461699)
1. Study of the in vitro corrosion behavior and biocompatibility of Zr-2.5Nb and Zr-1.5Nb-1Ta (at%) crystalline alloys. Rosalbino F; Macciò D; Giannoni P; Quarto R; Saccone A J Mater Sci Mater Med; 2011 May; 22(5):1293-302. PubMed ID: 21461699 [TBL] [Abstract][Full Text] [Related]
2. A comparative evaluation between new ternary zirconium alloys as alternative metals for orthopedic and dental prosthetic devices. Shyti G; Rosalbino F; Macciò D; Scarabelli L; Quarto R; Giannoni P Int J Artif Organs; 2014 Feb; 37(2):149-64. PubMed ID: 24627169 [TBL] [Abstract][Full Text] [Related]
3. In vitro corrosion behaviour of Ti-Nb-Sn shape memory alloys in Ringer's physiological solution. Rosalbino F; Macciò D; Scavino G; Saccone A J Mater Sci Mater Med; 2012 Apr; 23(4):865-71. PubMed ID: 22311078 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media. Oliveira NT; Biaggio SR; Rocha-Filho RC; Bocchi N J Biomed Mater Res A; 2005 Sep; 74(3):397-407. PubMed ID: 15983989 [TBL] [Abstract][Full Text] [Related]
5. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications. Samuel S; Nag S; Nasrazadani S; Ukirde V; El Bouanani M; Mohandas A; Nguyen K; Banerjee R J Biomed Mater Res A; 2010 Sep; 94(4):1251-6. PubMed ID: 20694992 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications. Oliveira NT; Guastaldi AC Acta Biomater; 2009 Jan; 5(1):399-405. PubMed ID: 18707926 [TBL] [Abstract][Full Text] [Related]
7. Structural, physical, chemical, and biological surface characterization of thermomechanically treated Ti-Nb-based alloys for bone implants. Sheremetyev V; Petrzhik M; Zhukova Y; Kazakbiev A; Arkhipova A; Moisenovich M; Prokoshkin S; Brailovski V J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):647-662. PubMed ID: 31121090 [TBL] [Abstract][Full Text] [Related]
8. Spinodal Zr-Nb alloys with ultrahigh elastic admissible strain and low magnetic susceptibility for orthopedic applications. Hua Z; Zhang D; Guo L; Lin J; Li Y; Wen C Acta Biomater; 2024 Aug; 184():444-460. PubMed ID: 38897338 [TBL] [Abstract][Full Text] [Related]
9. Effects of Zr Addition on the Microstructural Evolution, Mechanical Properties, and Corrosion Behavior of Novel Biomedical Ti-Zr-Mo-Mn Alloys. Li Z; Wo J; Fu Y; Xu X; Wang B; Liu H; You D; Sun G; Li W; Wang X ACS Biomater Sci Eng; 2023 Dec; 9(12):6935-6946. PubMed ID: 37941371 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and Characterization of a Novel Biocompatible Alloy, Ti-Nb-Zr-Ta-Sn. Khrunyk YY; Ehnert S; Grib SV; Illarionov AG; Stepanov SI; Popov AA; Ryzhkov MA; Belikov SV; Xu Z; Rupp F; Nüssler AK Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638960 [TBL] [Abstract][Full Text] [Related]
11. Effect of added porosity on a novel porous Ti-Nb-Ta-Fe-Mn alloy exposed to simulated body fluid. Guerra C; Sancy M; Walczak M; Martínez C; Ringuedé A; Cassir M; Han J; Ogle K; de Melo HG; Salinas V; Aguilar C Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110758. PubMed ID: 32279776 [TBL] [Abstract][Full Text] [Related]
12. Influence of noble metals alloying additions on the corrosion behaviour of titanium in a fluoride-containing environment. Rosalbino F; Delsante S; Borzone G; Scavino G J Mater Sci Mater Med; 2012 May; 23(5):1129-37. PubMed ID: 22382735 [TBL] [Abstract][Full Text] [Related]
13. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy. Raducanu D; Vasilescu E; Cojocaru VD; Cinca I; Drob P; Vasilescu C; Drob SI J Mech Behav Biomed Mater; 2011 Oct; 4(7):1421-30. PubMed ID: 21783152 [TBL] [Abstract][Full Text] [Related]
14. MRI-compatible Nb-60Ta-2Zr alloy for vascular stents: Electrochemical corrosion behavior in simulated plasma solution. Li HZ; Zhao X; Xu J Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():205-14. PubMed ID: 26249582 [TBL] [Abstract][Full Text] [Related]
15. Microstructure, mechanical property, corrosion behavior, and in vitro biocompatibility of Zr-Mo alloys. Zhou FY; Wang BL; Qiu KJ; Li L; Lin JP; Li HF; Zheng YF J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):237-46. PubMed ID: 23143798 [TBL] [Abstract][Full Text] [Related]
16. Cytocompatibility assessment of Ti-Nb-Zr-Si thin film metallic glasses with enhanced osteoblast differentiation for biomedical applications. Thanka Rajan S; Bendavid A; Subramanian B Colloids Surf B Biointerfaces; 2019 Jan; 173():109-120. PubMed ID: 30273871 [TBL] [Abstract][Full Text] [Related]
17. Designing new biocompatible glass-forming Ti75-x Zr10 Nbx Si15 (x = 0, 15) alloys: corrosion, passivity, and apatite formation. Abdi S; Oswald S; Gostin PF; Helth A; Sort J; Baró MD; Calin M; Schultz L; Eckert J; Gebert A J Biomed Mater Res B Appl Biomater; 2016 Jan; 104(1):27-38. PubMed ID: 25611821 [TBL] [Abstract][Full Text] [Related]
18. The Use of Electrochemical Methods to Determine the Effect of Nitrides of Alloying Elements on the Electrochemical Properties of Titanium β-Alloys. Jírů J; Hybášek V; Vlčák P; Fojt J Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675171 [TBL] [Abstract][Full Text] [Related]
19. In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys. Ito A; Okazaki Y; Tateishi T; Ito Y J Biomed Mater Res; 1995 Jul; 29(7):893-9. PubMed ID: 7593029 [TBL] [Abstract][Full Text] [Related]
20. Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: compositional optimization for potential biomedical applications. Hua N; Huang L; Chen W; He W; Zhang T Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():400-10. PubMed ID: 25280721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]