BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 21461773)

  • 1. Effects of environmental oxygen on development and respiration of Australian lungfish (Neoceratodus forsteri) embryos.
    Mueller CA; Joss JM; Seymour RS
    J Comp Physiol B; 2011 Oct; 181(7):941-52. PubMed ID: 21461773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The energy cost of embryonic development in fishes and amphibians, with emphasis on new data from the Australian lungfish, Neoceratodus forsteri.
    Mueller CA; Joss JM; Seymour RS
    J Comp Physiol B; 2011 Jan; 181(1):43-52. PubMed ID: 20676654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical windows in embryonic development: Shifting incubation temperatures alter heart rate and oxygen consumption of Lake Whitefish (Coregonus clupeaformis) embryos and hatchlings.
    Eme J; Mueller CA; Manzon RG; Somers CM; Boreham DR; Wilson JY
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jan; 179():71-80. PubMed ID: 25236178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of perivitelline fluid convection to oxygen uptake of Pseudophryne bibronii eggs.
    Mueller CA; Seymour RS
    Physiol Biochem Zool; 2011; 84(3):299-305. PubMed ID: 21527821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cessation of breathing in the chicken embryo during cold-hypometabolism.
    Ide R; Ide ST; Mortola JP
    Respir Physiol Neurobiol; 2017 Aug; 242():19-29. PubMed ID: 28341290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding ventilation and oxygen uptake of Pacific hagfish (Eptatretus stoutii), with particular emphasis on responses to ammonia and interactions with other respiratory gases.
    Eom J; Wood CM
    J Comp Physiol B; 2021 Mar; 191(2):255-271. PubMed ID: 33547930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological responses to prolonged aquatic hypoxia in the Queensland lungfish Neoceratodus forsteri.
    Kind PK; Grigg GC; Booth DT
    Respir Physiol Neurobiol; 2002 Aug; 132(2):179-90. PubMed ID: 12161331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of heart rate to the oxygen consumption of the chicken embryo during cold- or hypoxia-hypometabolism.
    Ide ST; Ide R; Mortola JP
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Jan; 203():49-58. PubMed ID: 27585797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epithelial action potentials in embryos of the Australian lungfish.
    Bone Q; Kemp A; Kemp D
    Proc R Soc Lond B Biol Sci; 1989 Jun; 237(1286):127-31. PubMed ID: 2569199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postinduction butorphanol administration alters oxygen consumption to improve blood gases in etorphine-immobilized white rhinoceros.
    Buss P; Miller M; Fuller A; Haw A; Stout E; Olea-Popelka F; Meyer L
    Vet Anaesth Analg; 2018 Jan; 45(1):57-67. PubMed ID: 29242121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development, surface exposure, and embryo behavior affect oxygen levels in eggs of the red-eyed treefrog, Agalychnis callidryas.
    Warkentin KM; Gomez-Mestre I; McDaniel JG
    Physiol Biochem Zool; 2005; 78(6):956-66. PubMed ID: 16228935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic scope in chicken embryos.
    Ide ST; Ide R; Mortola JP
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Oct; 212():81-87. PubMed ID: 28774753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spawning activity of the Australian lungfish Neoceratodus forsteri in an impoundment.
    Roberts DT; Mallett S; Krück NC; Loh W; Tibbetts I
    J Fish Biol; 2014 Jan; 84(1):163-77. PubMed ID: 24383803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of epidermal cilia in development of the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi).
    Kemp A
    J Morphol; 1996 May; 228(2):203-221. PubMed ID: 29852685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 12-day thermoregulatory metamorphosis of Red-winged Blackbirds (Agelaius phoeniceus).
    Sirsat SK; Sirsat TS; Crossley JL; Sotherland PR; Dzialowski EM
    J Comp Physiol B; 2016 Jul; 186(5):651-63. PubMed ID: 27003423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen, gills, and embryo behavior: mechanisms of adaptive plasticity in hatching.
    Warkentin KM
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Dec; 148(4):720-31. PubMed ID: 17363310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of nest temperature, nest substrate, and clutch size on the oxygenation of embryos and larvae of the Australian moss frog, Bryobatrachus nimbus.
    Mitchell NJ; Seymour RS
    Physiol Biochem Zool; 2003; 76(1):60-71. PubMed ID: 12695987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced cerebral perfusion during brief exposures to cyclic intermittent hypoxemia.
    Liu X; Xu D; Hall JR; Ross S; Chen S; Liu H; Mallet RT; Shi X
    J Appl Physiol (1985); 2017 Dec; 123(6):1689-1697. PubMed ID: 29074711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive measurement of cardiac output using an iterative, respiration-based method.
    Klein M; Minkovich L; Machina M; Selzner M; Spetzler VN; Knaak JM; Roy D; Duffin J; Fisher JA
    Br J Anaesth; 2015 Mar; 114(3):406-13. PubMed ID: 25488304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of endothermic metabolic response in embryos and hatchlings of the emu (Dromaius novaehollandiae).
    Dzialowski EM; Burggren WW; Komoro T; Tazawa H
    Respir Physiol Neurobiol; 2007 Mar; 155(3):286-92. PubMed ID: 16843738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.