BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21461837)

  • 1. Protein microarrays for the identification of praja1 e3 ubiquitin ligase substrates.
    Loch CM; Eddins MJ; Strickler JE
    Cell Biochem Biophys; 2011 Jun; 60(1-2):127-35. PubMed ID: 21461837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of proteome arrays to globally identify substrates for E3 ubiquitin ligases.
    Persaud A; Rotin D
    Methods Mol Biol; 2011; 759():215-24. PubMed ID: 21863490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of SUMO E3 ligase-specific substrates using the HuProt human proteome microarray.
    Cox E; Uzoma I; Guzzo C; Jeong JS; Matunis M; Blackshaw S; Zhu H
    Methods Mol Biol; 2015; 1295():455-63. PubMed ID: 25820740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using proteomics to identify ubiquitin ligase-substrate pairs: how novel methods may unveil therapeutic targets for neurodegenerative diseases.
    Rayner SL; Morsch M; Molloy MP; Shi B; Chung R; Lee A
    Cell Mol Life Sci; 2019 Jul; 76(13):2499-2510. PubMed ID: 30919022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of substrates of SMURF1 ubiquitin ligase activity utilizing protein microarrays.
    Andrews PS; Schneider S; Yang E; Michaels M; Chen H; Tang J; Emkey R
    Assay Drug Dev Technol; 2010 Aug; 8(4):471-87. PubMed ID: 20804422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microarray of ubiquitylated proteins for profiling deubiquitylase activity reveals the critical roles of both chain and substrate.
    Loch CM; Strickler JE
    Biochim Biophys Acta; 2012 Nov; 1823(11):2069-78. PubMed ID: 22626734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A RING finger protein Praja1 regulates Dlx5-dependent transcription through its ubiquitin ligase activity for the Dlx/Msx-interacting MAGE/Necdin family protein, Dlxin-1.
    Sasaki A; Masuda Y; Iwai K; Ikeda K; Watanabe K
    J Biol Chem; 2002 Jun; 277(25):22541-6. PubMed ID: 11959851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme-substrate relationships in the ubiquitin system: approaches for identifying substrates of ubiquitin ligases.
    O'Connor HF; Huibregtse JM
    Cell Mol Life Sci; 2017 Sep; 74(18):3363-3375. PubMed ID: 28455558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding cullin-RING E3 biology through proteomics-based substrate identification.
    Harper JW; Tan MK
    Mol Cell Proteomics; 2012 Dec; 11(12):1541-50. PubMed ID: 22962057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast.
    Gupta R; Kus B; Fladd C; Wasmuth J; Tonikian R; Sidhu S; Krogan NJ; Parkinson J; Rotin D
    Mol Syst Biol; 2007; 3():116. PubMed ID: 17551511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of ubiquitination substrates reveals a CTLH E3 ligase complex-dependent regulation of glycolysis.
    Maitland MER; Kuljanin M; Wang X; Lajoie GA; Schild-Poulter C
    FASEB J; 2021 Sep; 35(9):e21825. PubMed ID: 34383978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ubiquitin ligase Praja1 reduces NRAGE expression and inhibits neuronal differentiation of PC12 cells.
    Teuber J; Mueller B; Fukabori R; Lang D; Albrecht A; Stork O
    PLoS One; 2013; 8(5):e63067. PubMed ID: 23717400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A label-free quantitative proteomics strategy to identify E3 ubiquitin ligase substrates targeted to proteasome degradation.
    Burande CF; Heuzé ML; Lamsoul I; Monsarrat B; Uttenweiler-Joseph S; Lutz PG
    Mol Cell Proteomics; 2009 Jul; 8(7):1719-27. PubMed ID: 19376791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A substrate-trapping strategy to find E3 ubiquitin ligase substrates identifies Parkin and TRIM28 targets.
    Watanabe M; Saeki Y; Takahashi H; Ohtake F; Yoshida Y; Kasuga Y; Kondo T; Yaguchi H; Suzuki M; Ishida H; Tanaka K; Hatakeyama S
    Commun Biol; 2020 Oct; 3(1):592. PubMed ID: 33082525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic approaches to identify E3 ligase substrates.
    Iconomou M; Saunders DN
    Biochem J; 2016 Nov; 473(22):4083-4101. PubMed ID: 27834739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Rampant Expansion of Ubiquitin Proteomics.
    Rose A; Mayor T
    Methods Mol Biol; 2018; 1844():345-362. PubMed ID: 30242720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomics strategy to identify substrates of LNX, a PDZ domain-containing E3 ubiquitin ligase.
    Guo Z; Song E; Ma S; Wang X; Gao S; Shao C; Hu S; Jia L; Tian R; Xu T; Gao Y
    J Proteome Res; 2012 Oct; 11(10):4847-62. PubMed ID: 22889411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis reveals novel ligands and substrates for LNX1 E3 ubiquitin ligase.
    Lenihan JA; Saha O; Young PW
    PLoS One; 2017; 12(11):e0187352. PubMed ID: 29121065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels.
    Lee KA; Hammerle LP; Andrews PS; Stokes MP; Mustelin T; Silva JC; Black RA; Doedens JR
    J Biol Chem; 2011 Dec; 286(48):41530-41538. PubMed ID: 21987572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4-2 using proteome arrays.
    Persaud A; Alberts P; Amsen EM; Xiong X; Wasmuth J; Saadon Z; Fladd C; Parkinson J; Rotin D
    Mol Syst Biol; 2009; 5():333. PubMed ID: 19953087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.