BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1161 related articles for article (PubMed ID: 21461850)

  • 1. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.
    McGinn PJ; Dickinson KE; Bhatti S; Frigon JC; Guiot SR; O'Leary SJ
    Photosynth Res; 2011 Sep; 109(1-3):231-47. PubMed ID: 21461850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production.
    Yadav G; Dash SK; Sen R
    Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of sustainable algal biofuel production using wastewater resources.
    Pittman JK; Dean AP; Osundeko O
    Bioresour Technol; 2011 Jan; 102(1):17-25. PubMed ID: 20594826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems.
    Xia A; Murphy JD
    Trends Biotechnol; 2016 Apr; 34(4):264-275. PubMed ID: 26776247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy.
    Zhou W; Wang Z; Xu J; Ma L
    J Biosci Bioeng; 2018 Nov; 126(5):644-648. PubMed ID: 29801764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perspectives on the feasibility of using microalgae for industrial wastewater treatment.
    Wang Y; Ho SH; Cheng CL; Guo WQ; Nagarajan D; Ren NQ; Lee DJ; Chang JS
    Bioresour Technol; 2016 Dec; 222():485-497. PubMed ID: 27765375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions.
    Mutanda T; Karthikeyan S; Bux F
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Progress in microalgae culture system for biodiesel combined with reducing carbon dioxide emission].
    Su H; Zhou X; Xia X; Sun Z; Zhang Y
    Sheng Wu Gong Cheng Xue Bao; 2011 Sep; 27(9):1268-80. PubMed ID: 22117510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment.
    Wrede D; Taha M; Miranda AF; Kadali K; Stevenson T; Ball AS; Mouradov A
    PLoS One; 2014; 9(11):e113497. PubMed ID: 25419574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resource recovery through bioremediation of wastewaters and waste carbon by microalgae: a circular bioeconomy approach.
    Ummalyma SB; Sahoo D; Pandey A
    Environ Sci Pollut Res Int; 2021 Nov; 28(42):58837-58856. PubMed ID: 33527238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the feasibility of producing biofuels from microalgae using wastewater.
    Rawat I; Bhola V; Kumar RR; Bux F
    Environ Technol; 2013; 34(13-16):1765-75. PubMed ID: 24350433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae.
    Park H; Lee CG
    Biotechnol J; 2016 Nov; 11(11):1461-1470. PubMed ID: 27782372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Waste biorefineries - integrating anaerobic digestion and microalgae cultivation for bioenergy production.
    Chen YD; Ho SH; Nagarajan D; Ren NQ; Chang JS
    Curr Opin Biotechnol; 2018 Apr; 50():101-110. PubMed ID: 29227859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation.
    Amaro HM; Salgado EM; Nunes OC; Pires JCM; Esteves AF
    J Environ Manage; 2023 Jul; 337():117678. PubMed ID: 36948147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Holistic Approach to Circular Bioeconomy Through the Sustainable Utilization of Microalgal Biomass for Biofuel and Other Value-Added Products.
    Ezhumalai G; Arun M; Manavalan A; Rajkumar R; Heese K
    Microb Ecol; 2024 Apr; 87(1):61. PubMed ID: 38662080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection, breeding and engineering of microalgae for bioenergy and biofuel production.
    Larkum AW; Ross IL; Kruse O; Hankamer B
    Trends Biotechnol; 2012 Apr; 30(4):198-205. PubMed ID: 22178650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels.
    Markou G; Angelidaki I; Georgakakis D
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):631-45. PubMed ID: 22996277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation.
    Guldhe A; Kumari S; Ramanna L; Ramsundar P; Singh P; Rawat I; Bux F
    J Environ Manage; 2017 Dec; 203(Pt 1):299-315. PubMed ID: 28803154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microalgae starch: A promising raw material for the bioethanol production.
    Maia JLD; Cardoso JS; Mastrantonio DJDS; Bierhals CK; Moreira JB; Costa JAV; Morais MG
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2739-2749. PubMed ID: 33470200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on co-culturing of microalgae: A greener strategy towards sustainable biofuels production.
    Ray A; Nayak M; Ghosh A
    Sci Total Environ; 2022 Jan; 802():149765. PubMed ID: 34454141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.