These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 21461935)

  • 1. The stomatal CO2 proxy does not saturate at high atmospheric CO2 concentrations: evidence from stomatal index responses of Araucariaceae conifers.
    Haworth M; Elliott-Kingston C; McElwain JC
    Oecologia; 2011 Sep; 167(1):11-9. PubMed ID: 21461935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers.
    Haworth M; Heath J; McElwain JC
    Ann Bot; 2010 Mar; 105(3):411-8. PubMed ID: 20089556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new positive relationship between pCO2 and stomatal frequency in Quercus guyavifolia (Fagaceae): a potential proxy for palaeo-CO2 levels.
    Hu JJ; Xing YW; Turkington R; Jacques FM; Su T; Huang YJ; Zhou ZK
    Ann Bot; 2015 Apr; 115(5):777-88. PubMed ID: 25681824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two tropical conifers show strong growth and water-use efficiency responses to altered CO2 concentration.
    Dalling JW; Cernusak LA; Winter K; Aranda J; Garcia M; Virgo A; Cheesman AW; Baresch A; Jaramillo C; Turner BL
    Ann Bot; 2016 Nov; 118(6):1113-1125. PubMed ID: 27582361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2 concentrations.
    Field KJ; Duckett JG; Cameron DD; Pressel S
    Ann Bot; 2015 May; 115(6):915-22. PubMed ID: 25858324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stomatal index responses of Agrostis canina to CO2 and sulphur dioxide: implications for palaeo-[CO2] using the stomatal proxy.
    Haworth M; Gallagher A; Elliott-Kingston C; Raschi A; Marandola D; McElwain JC
    New Phytol; 2010 Nov; 188(3):845-55. PubMed ID: 20704659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stomatal frequency of Quercus glauca from three material sources shows the same inverse response to atmospheric pCO2.
    Hu JJ; Xing YW; Su T; Huang YJ; Zhou ZK
    Ann Bot; 2019 Jul; 123(7):1147-1158. PubMed ID: 30861064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-ordination of physiological and morphological responses of stomata to elevated [CO2] in vascular plants.
    Haworth M; Elliott-Kingston C; McElwain JC
    Oecologia; 2013 Jan; 171(1):71-82. PubMed ID: 22810089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.
    Franks PJ; Beerling DJ
    Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10343-7. PubMed ID: 19506250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of elevated carbon dioxide on stomatal characteristics and carbon isotope ratio of Arabidopsis thaliana ecotypes originating from an altitudinal gradient.
    Caldera HI; De Costa WA; Woodward FI; Lake JA; Ranwala SM
    Physiol Plant; 2017 Jan; 159(1):74-92. PubMed ID: 27514017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of stomatal density response to atmospheric CO2.
    Konrad W; Roth-Nebelsick A; Grein M
    J Theor Biol; 2008 Aug; 253(4):638-58. PubMed ID: 18538792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating stomatal physiology and morphology: evolution of stomatal control and development of future crops.
    Haworth M; Marino G; Loreto F; Centritto M
    Oecologia; 2021 Dec; 197(4):867-883. PubMed ID: 33515295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination of stomatal physiological behavior and morphology with carbon dioxide determines stomatal control.
    Haworth M; Killi D; Materassi A; Raschi A
    Am J Bot; 2015 May; 102(5):677-88. PubMed ID: 26022482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-use responses of 'living fossil' conifers to CO2 enrichment in a simulated Cretaceous polar environment.
    Llorens L; Osborne CP; Beerling DJ
    Ann Bot; 2009 Jul; 104(1):179-88. PubMed ID: 19447810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The functional significance of the stomatal size to density relationship: Interaction with atmospheric [CO
    Haworth M; Marino G; Materassi A; Raschi A; Scutt CP; Centritto M
    Sci Total Environ; 2023 Mar; 863():160908. PubMed ID: 36535478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of subambient to elevated atmospheric CO₂ concentration on vascular function in Helianthus annuus: implications for plant response to climate change.
    Rico C; Pittermann J; Polley HW; Aspinwall MJ; Fay PA
    New Phytol; 2013 Sep; 199(4):956-965. PubMed ID: 23731256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early Miocene CO
    Londoño L; Royer DL; Jaramillo C; Escobar J; Foster DA; Cárdenas-Rozo AL; Wood A
    Am J Bot; 2018 Nov; 105(11):1929-1937. PubMed ID: 30418663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drought avoidance and vulnerability in the Australian Araucariaceae.
    Zimmer HC; Brodribb TJ; Delzon S; Baker PJ
    Tree Physiol; 2016 Feb; 36(2):218-28. PubMed ID: 26612850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Links between environment and stomatal size through evolutionary time in Proteaceae.
    Jordan GJ; Carpenter RJ; Holland BR; Beeton NJ; Woodhams MD; Brodribb TJ
    Proc Biol Sci; 2020 Jan; 287(1919):20192876. PubMed ID: 31992170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pushed to the limit: consequences of climate change for the Araucariaceae: a relictual rain forest family.
    Offord CA
    Ann Bot; 2011 Aug; 108(2):347-57. PubMed ID: 21727080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.