These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21462147)

  • 1. A validated CFD model to predict O₂ and CO₂ transfer within hollow fiber membrane oxygenators.
    Hormes M; Borchardt R; Mager I; Rode TS; Behr M; Steinseifer U
    Int J Artif Organs; 2011 Mar; 34(3):317-25. PubMed ID: 21462147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-assisted numerical analysis for oxygen and carbon dioxide mass transfer in blood oxygenators.
    Turri F; Yanagihara JI
    Artif Organs; 2011 Jun; 35(6):579-92. PubMed ID: 21671959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical modeling of anisotropic fiber bundle behavior in oxygenators.
    Bhavsar SS; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2011 Nov; 35(11):1095-102. PubMed ID: 21973082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mathematical model to predict CO2 removal in hollow fiber membrane oxygenators.
    Svitek RG; Federspiel WJ
    Ann Biomed Eng; 2008 Jun; 36(6):992-1003. PubMed ID: 18347984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Modeling of Oxygen Transfer in Artificial Lungs.
    Kaesler A; Rosen M; Schmitz-Rode T; Steinseifer U; Arens J
    Artif Organs; 2018 Aug; 42(8):786-799. PubMed ID: 30043394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Computational Modeling can Help to Predict Gas Transfer in Artificial Lungs Early in the Design Process.
    Kaesler A; Rosen M; Schlanstein PC; Wagner G; Groß-Hardt S; Schmitz-Rode T; Steinseifer U; Arens J
    ASAIO J; 2020 Jun; 66(6):683-690. PubMed ID: 31789656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an intravenous membrane oxygenator: enhanced intravenous gas exchange through convective mixing of blood around hollow fiber membranes.
    Hattler BG; Reeder GD; Sawzik PJ; Lund LW; Walters FR; Shah AS; Rawleigh J; Goode JS; Klain M; Borovetz HS
    Artif Organs; 1994 Nov; 18(11):806-12. PubMed ID: 7864728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in vitro comparison of gas transfer and pressure drop of the Bentley Duraflo Coated Spiral Gold and the Medtronic Carmeda Coated Maxima hollow fiber membrane oxygenators.
    Vocelka CR; Thomas R; Verrier E; Kunzelman K
    J Extra Corpor Technol; 1997 Dec; 29(4):185-8. PubMed ID: 10176127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Approach to Visualize Flow in a Stacked Hollow Fiber Bundle of an Artificial Lung With Particle Image Velocimetry.
    Kaesler A; Schlanstein PC; Hesselmann F; Büsen M; Klaas M; Roggenkamp D; Schmitz-Rode T; Steinseifer U; Arens J
    Artif Organs; 2017 Jun; 41(6):529-538. PubMed ID: 27925231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From the spinning disc to the membrane oxygenator for open-heart surgery.
    Björk VO; Sternlieb JJ; Davenport C
    Scand J Thorac Cardiovasc Surg; 1985; 19(3):207-16. PubMed ID: 3936170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a novel polyimide hollow-fiber oxygenator.
    Niwa M; Kawakami H; Nagaoka S; Kanamori T; Morisaku K; Shinbo T; Matsuda T; Sakai K; Kubota S
    Artif Organs; 2004 May; 28(5):487-95. PubMed ID: 15113344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-Based Design and Optimization of Blood Oxygenators.
    He G; Zhang T; Zhang J; Griffith BP; Wu ZJ
    J Med Device; 2020 Dec; 14(4):041001. PubMed ID: 32983315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of a MedArray silicone hollow fiber oxygenator.
    LaFayette NG; Schewe RE; Montoya JP; Cook KE
    ASAIO J; 2009; 55(4):382-7. PubMed ID: 19381081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulsatile flow and oxygen transport past cylindrical fiber arrays for an artificial lung: computational and experimental studies.
    Zierenberg JR; Fujioka H; Cook KE; Grotberg JB
    J Biomech Eng; 2008 Jun; 130(3):031019. PubMed ID: 18532868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Description of a flow optimized oxygenator with integrated pulsatile pump.
    Borchardt R; Schlanstein P; Arens J; Graefe R; Schreiber F; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2010 Nov; 34(11):904-10. PubMed ID: 21092033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen-transfer performance of a newly designed, very low-volume membrane oxygenator.
    Burn F; Ciocan S; Carmona NM; Berner M; Sourdon J; Carrel TP; Tevaearai Stahel HT; Longnus SL
    Interact Cardiovasc Thorac Surg; 2015 Sep; 21(3):352-8. PubMed ID: 26037378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of a mathematical model to predict oxygen transfer rates in hollow fiber membrane oxygenators.
    Vaslef SN; Mockros LF; Anderson RW; Leonard RJ
    ASAIO J; 1994; 40(4):990-6. PubMed ID: 7858338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous gas bubbling in microporous oxygenators.
    Karichev ZR; Muler AL; Vishnevsky ME
    Artif Organs; 1999 Oct; 23(10):904-9. PubMed ID: 10564288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting membrane oxygenator pressure drop using computational fluid dynamics.
    Gage KL; Gartner MJ; Burgreen GW; Wagner WR
    Artif Organs; 2002 Jul; 26(7):600-7. PubMed ID: 12081518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure drop, shear stress, and activation of leukocytes during cardiopulmonary bypass: a comparison between hollow fiber and flat sheet membrane oxygenators.
    Gu YJ; Boonstra PW; Graaff R; Rijnsburger AA; Mungroop H; van Oeveren W
    Artif Organs; 2000 Jan; 24(1):43-8. PubMed ID: 10677156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.