BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 21462315)

  • 1. Short interspersed elements (SINEs) of squamate reptiles (Squam1 and Squam2): structure and phylogenetic significance.
    Grechko VV; Kosushkin SA; Borodulina OR; Butaeva FG; Darevsky IS
    J Exp Zool B Mol Dev Evol; 2011 May; 316B(3):212-26. PubMed ID: 21462315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of taxon sampling on recovering the phylogeny of squamate reptiles based on complete mitochondrial genome and nuclear gene sequence data.
    Albert EM; San Mauro D; García-París M; Rüber L; Zardoya R
    Gene; 2009 Jul; 441(1-2):12-21. PubMed ID: 18639394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sauria SINEs: Novel short interspersed retroposable elements that are widespread in reptile genomes.
    Piskurek O; Austin CC; Okada N
    J Mol Evol; 2006 May; 62(5):630-44. PubMed ID: 16612539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel SINE families from salmons validate Parahucho (Salmonidae) as a distinct genus and give evidence that SINEs can incorporate LINE-related 3'-tails of other SINEs.
    Matveev V; Nishihara H; Okada N
    Mol Biol Evol; 2007 Aug; 24(8):1656-66. PubMed ID: 17470437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complete mitochondrial genome of the green lizard Lacerta viridis viridis (Reptilia: Lacertidae) and its phylogenetic position within squamate reptiles.
    Böhme MU; Fritzsch G; Tippmann A; Schlegel M; Berendonk TU
    Gene; 2007 Jun; 394(1-2):69-77. PubMed ID: 17391869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Families of short interspersed elements in the genome of the oomycete plant pathogen, Phytophthora infestans.
    Whisson SC; Avrova AO; Lavrova O; Pritchard L
    Fungal Genet Biol; 2005 Apr; 42(4):351-65. PubMed ID: 15749054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and Characterization of Interspersed Repeated Sequences in the Common Lizard, Zootoca vivipara, and Their Conservation in Squamata.
    Petraccioli A; Guarino FM; Kupriyanova L; Mezzasalma M; Odierna G; Picariello O; Capriglione T
    Cytogenet Genome Res; 2019; 157(1-2):65-76. PubMed ID: 30836364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes.
    Vidal N; Hedges SB
    C R Biol; 2005; 328(10-11):1000-8. PubMed ID: 16286089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary inventions and continuity of CORE-SINEs in mammals.
    Gilbert N; Labuda D
    J Mol Biol; 2000 May; 298(3):365-77. PubMed ID: 10772856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A family of short retroposons (Squaml) from squamate reptiles (Reptilia: Squamata): structure, evolution and correlation with phylogeny].
    Kosushkin SA; Borodulina OR; Solov'eva EN; Grechko VV
    Mol Biol (Mosk); 2008; 42(6):977-89. PubMed ID: 19140317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular phylogenetics of squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree.
    Townsend T; Larson A; Louis E; Macey JR
    Syst Biol; 2004 Oct; 53(5):735-57. PubMed ID: 15545252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First application of the SINE (short interspersed repetitive element) method to infer phylogenetic relationships in reptiles: an example from the turtle superfamily Testudinoidea.
    Sasaki T; Takahashi K; Nikaido M; Miura S; Yasukawa Y; Okada N
    Mol Biol Evol; 2004 Apr; 21(4):705-15. PubMed ID: 15014157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Short interspersed repetitive sequences (SINEs) and their use as a phylogenetic tool].
    Kramerov DA; Vasetskiĭ NS
    Mol Biol (Mosk); 2009; 43(5):795-806. PubMed ID: 19899627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution of two partner LINE/SINE families and a full-length chromodomain-containing Ty3/Gypsy LTR element in the first reptilian genome of Anolis carolinensis.
    Piskurek O; Nishihara H; Okada N
    Gene; 2009 Jul; 441(1-2):111-8. PubMed ID: 19118606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel group of families of short interspersed repetitive elements (SINEs) in Xenopus: evidence of a specific target site for DNA-mediated transposition of inverted-repeat SINEs.
    Unsal K; Morgan GT
    J Mol Biol; 1995 May; 248(4):812-23. PubMed ID: 7752242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common evolutionary trends for SINE RNA structures.
    Sun FJ; Fleurdépine S; Bousquet-Antonelli C; Caetano-Anollés G; Deragon JM
    Trends Genet; 2007 Jan; 23(1):26-33. PubMed ID: 17126948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Finding of Bov-B LINE retroelement in parthenogenetic and bisexual lizard species of the genus Darevskia (Lacertidae)].
    Martirosian IA; Korchagin VI; Tokarskaia ON; Darevskiĭ IS; Ryskov AP
    Genetika; 2006 Jul; 42(7):963-7. PubMed ID: 16915928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Molecular genetic relationships and some issues of systematics of rock lizards of the genus Darevskia (Squamata: Lacertidae) based on locus analysis of SINE-type repeats (Squam1)].
    Kosushkin SA; Grechko VV
    Genetika; 2013 Aug; 49(8):986-99. PubMed ID: 25474886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of active LINE and SINEs from the eel.
    Kajikawa M; Ichiyanagi K; Tanaka N; Okada N
    Mol Biol Evol; 2005 Mar; 22(3):673-82. PubMed ID: 15548748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PCR-based approach to SINE isolation: simple and complex SINEs.
    Borodulina OR; Kramerov DA
    Gene; 2005 Apr; 349():197-205. PubMed ID: 15777739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.