These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21462981)

  • 1. Controlled self-assembly of filled micelles on nanotubes.
    Patra N; Král P
    J Am Chem Soc; 2011 Apr; 133(16):6146-9. PubMed ID: 21462981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of water filling the hydrophobic channels of narrow carbon nanotubes studied by molecular dynamics simulations.
    Wu K; Zhou B; Xiu P; Qi W; Wan R; Fang H
    J Chem Phys; 2010 Nov; 133(20):204702. PubMed ID: 21133447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photopolymerized lipids self-assembly for the solubilization of carbon nanotubes.
    Contal E; Morère A; Thauvin C; Perino A; Meunier S; Mioskowski C; Wagner A
    J Phys Chem B; 2010 May; 114(17):5718-22. PubMed ID: 20380427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of charge on water filling/emptying transitions of nanochannel.
    Lu H; Zhou X; Wu F; Xu Y
    J Phys Chem B; 2008 Dec; 112(51):16777-81. PubMed ID: 19367816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed self-assembly of surfactants in carbon nanotube materials.
    Angelikopoulos P; Bock H
    J Phys Chem B; 2008 Nov; 112(44):13793-801. PubMed ID: 18855463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular self-assembly of lipid derivatives on carbon nanotubes.
    Richard C; Balavoine F; Schultz P; Ebbesen TW; Mioskowski C
    Science; 2003 May; 300(5620):775-8. PubMed ID: 12730595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the self-assembly of lipids and nanotubes in solution: forming vesicles and bicelles with transmembrane nanotube channels.
    Dutt M; Kuksenok O; Nayhouse MJ; Little SR; Balazs AC
    ACS Nano; 2011 Jun; 5(6):4769-82. PubMed ID: 21604769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H
    J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the Alzheimer's Aβ40 peptide in SDS micelles using molecular dynamics simulations.
    Jalili S; Akhavan M
    Biophys Chem; 2011 Jan; 153(2-3):179-86. PubMed ID: 21183271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic and reversible self-assembly of photoelectrochemical complexes based on lipid bilayer disks, photosynthetic reaction centers, and single-walled carbon nanotubes.
    Boghossian AA; Choi JH; Ham MH; Strano MS
    Langmuir; 2011 Mar; 27(5):1599-609. PubMed ID: 21291272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotubes as templates for polymerized lipid assemblies.
    Thauvin C; Rickling S; Schultz P; Célia H; Meunier S; Mioskowski C
    Nat Nanotechnol; 2008 Dec; 3(12):743-8. PubMed ID: 19057595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulation of amphiphilic molecules in solution: micelle formation and dynamic coexistence.
    Fujiwara S; Itoh T; Hashimoto M; Horiuchi R
    J Chem Phys; 2009 Apr; 130(14):144901. PubMed ID: 19368465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micelle-encapsulated carbon nanotubes: a route to nanotube composites.
    Kang Y; Taton TA
    J Am Chem Soc; 2003 May; 125(19):5650-1. PubMed ID: 12733901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation and thermodynamic modeling of the self-assembly of the triterpenoids asiatic acid and madecassic acid in aqueous solution.
    Stephenson BC; Goldsipe A; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(8):2357-71. PubMed ID: 18247591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse-grained simulations of rapid assembly kinetics for polystyrene-b-poly(ethylene oxide) copolymers in aqueous solutions.
    Chen T; Hynninen AP; Prud'homme RK; Kevrekidis IG; Panagiotopoulos AZ
    J Phys Chem B; 2008 Dec; 112(51):16357-66. PubMed ID: 19367859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of ordered nanowires in biological suspensions of single-wall carbon nanotubes.
    Hobbie EK; Fagan JA; Becker ML; Hudson SD; Fakhri N; Pasquali M
    ACS Nano; 2009 Jan; 3(1):189-96. PubMed ID: 19206266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular assembly of an amphiphilic Gd(III) chelate: tuning the reorientational correlation time and the water exchange rate.
    Torres S; Martins JA; André JP; Geraldes CF; Merbach AE; Tóth E
    Chemistry; 2006 Jan; 12(3):940-8. PubMed ID: 16224764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wrapping nanotubes with micelles, hemimicelles, and cylindrical micelles.
    Calvaresi M; Dallavalle M; Zerbetto F
    Small; 2009 Oct; 5(19):2191-8. PubMed ID: 19642090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of the interfacial and structural properties of dimethyldodecylamine-N-oxide micelles.
    Lorenz CD; Hsieh CM; Dreiss CA; Lawrence MJ
    Langmuir; 2011 Jan; 27(2):546-53. PubMed ID: 21166438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wormlike micelle formation in peptide-lipid conjugates driven by secondary structure transformation of the headgroups.
    Shimada T; Lee S; Bates FS; Hotta A; Tirrell M
    J Phys Chem B; 2009 Oct; 113(42):13711-4. PubMed ID: 19572667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.