BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 21463376)

  • 21. Chlamydia trachomatis-infected host cells resist dsRNA-induced apoptosis.
    Böhme L; Albrecht M; Riede O; Rudel T
    Cell Microbiol; 2010 Sep; 12(9):1340-51. PubMed ID: 20482554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wedelolactone exhibits anti-fibrotic effects on human hepatic stellate cell line LX-2.
    Xia Y; Chen J; Cao Y; Xu C; Li R; Pan Y; Chen X
    Eur J Pharmacol; 2013 Aug; 714(1-3):105-11. PubMed ID: 23791612
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of intracellular multiplication of human strains of Chlamydia trachomatis by nitric oxide.
    Igietseme JU; Uriri IM; Chow M; Abe E; Rank RG
    Biochem Biophys Res Commun; 1997 Mar; 232(3):595-601. PubMed ID: 9126319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immune-mediated control of Chlamydia infection.
    Roan NR; Starnbach MN
    Cell Microbiol; 2008 Jan; 10(1):9-19. PubMed ID: 17979983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of apoptotic activities during chlamydia trachomatis infection in primary cervical epithelial cells.
    Vats V; Agrawal T; Salhan S; Mittal A
    Immunol Invest; 2010; 39(7):674-87. PubMed ID: 20840054
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chlamydia trachomatis-specific human CD8+ T cells show two patterns of antigen recognition.
    Matyszak MK; Gaston JS
    Infect Immun; 2004 Aug; 72(8):4357-67. PubMed ID: 15271891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of sustained antibiotic bactericidal treatment on Chlamydia trachomatis-infected epithelial-like cells (HeLa) and monocyte-like cells (THP-1 and U-937).
    Mpiga P; Ravaoarinoro M
    Int J Antimicrob Agents; 2006 Apr; 27(4):316-24. PubMed ID: 16527461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics of the Chlamydia trachomatis species - immunopathology and infections.
    Choroszy-Król IC; Frej-Mądrzak M; Jama-Kmiecik A; Bober T; Jolanta Sarowska J
    Adv Clin Exp Med; 2012; 21(6):799-808. PubMed ID: 23457138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ChlaDub1 of Chlamydia trachomatis suppresses NF-kappaB activation and inhibits IkappaBalpha ubiquitination and degradation.
    Le Negrate G; Krieg A; Faustin B; Loeffler M; Godzik A; Krajewski S; Reed JC
    Cell Microbiol; 2008 Sep; 10(9):1879-92. PubMed ID: 18503636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Expression of SOCS-1, 3 induced by Chlamydia trachomatis-infected Hela229].
    Wei XQ; Cheng W; Yan J; Mei B; Huo Z; Yu P
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2004 Dec; 29(6):639-42. PubMed ID: 16114546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The potential protective role of the combination of IL-22 and TNF-α against genital tract Chlamydia trachomatis infection.
    Zhao X; Zhu D; Ye J; Li X; Wang Z; Zhang L; Xu W
    Cytokine; 2015 May; 73(1):66-73. PubMed ID: 25734538
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene knockout B cell-deficient mice demonstrate that B cells play an important role in the initiation of T cell responses to Chlamydia trachomatis (mouse pneumonitis) lung infection.
    Yang X; Brunham RC
    J Immunol; 1998 Aug; 161(3):1439-46. PubMed ID: 9686609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Host defense peptides: general overview and an update on their activity against Chlamydia spp.
    Di Francesco A; Favaroni A; Donati M
    Expert Rev Anti Infect Ther; 2013 Nov; 11(11):1215-24. PubMed ID: 24111488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Baicalin suppresses expression of Chlamydia protease-like activity factor in Hep-2 cells infected by Chlamydia trachomatis.
    Hao H; Aixia Y; Dan L; Lei F; Nancai Y; Wen S
    Fitoterapia; 2009 Oct; 80(7):448-52. PubMed ID: 19524644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chlamydia trachomatis infection modulates trophoblast cytokine/chemokine production.
    de la Torre E; Mulla MJ; Yu AG; Lee SJ; Kavathas PB; Abrahams VM
    J Immunol; 2009 Mar; 182(6):3735-45. PubMed ID: 19265152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine.
    Brunham RC; Rey-Ladino J
    Nat Rev Immunol; 2005 Feb; 5(2):149-61. PubMed ID: 15688042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Free iron ions decrease indoleamine 2,3-dioxygenase expression and reduce IFNgamma-induced inhibition of Chlamydia trachomatis infection.
    Krausse-Opatz B; Wittkop U; Gutzki FM; Schmidt C; Jürgens-Saathoff B; Meier S; Beckmann B; Takikawa O; Morgan MA; Tsikas D; Stichtenoth DO; Wagner AD; Zeidler H; Köhler L
    Microb Pathog; 2009 Jun; 46(6):289-97. PubMed ID: 19306922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Susceptibility of prostate epithelial cells to Chlamydia muridarum infection and their role in innate immunity by recruitment of intracellular Toll-like receptors 4 and 2 and MyD88 to the inclusion.
    Mackern-Oberti JP; Maccioni M; Cuffini C; Gatti G; Rivero VE
    Infect Immun; 2006 Dec; 74(12):6973-81. PubMed ID: 16954392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of the host cell proinflammatory interleukin-8 response by Chlamydia trachomatis.
    Buchholz KR; Stephens RS
    Cell Microbiol; 2006 Nov; 8(11):1768-79. PubMed ID: 16803583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell death, BAX activation, and HMGB1 release during infection with Chlamydia.
    Jungas T; Verbeke P; Darville T; Ojcius DM
    Microbes Infect; 2004 Nov; 6(13):1145-55. PubMed ID: 15488733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.