BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21463600)

  • 1. Characterization of reduced and oxidized dopamine and 3,4-dihydrophenylacetic acid, on brain mitochondrial electron transport chain activities.
    Gautam AH; Zeevalk GD
    Biochim Biophys Acta; 2011 Jul; 1807(7):819-28. PubMed ID: 21463600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic inhibition of respiration in brain mitochondria by nitric oxide and dihydroxyphenylacetic acid (DOPAC). Implications for Parkinson's disease.
    Nunes C; Almeida L; Laranjinha J
    Neurochem Int; 2005 Aug; 47(3):173-82. PubMed ID: 15893407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine but not 3,4-dihydroxy phenylacetic acid (DOPAC) inhibits brain respiratory chain activity by autoxidation and mitochondria catalyzed oxidation to quinone products: implications in Parkinson's disease.
    Jana S; Maiti AK; Bagh MB; Banerjee K; Das A; Roy A; Chakrabarti S
    Brain Res; 2007 Mar; 1139():195-200. PubMed ID: 17291463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of rat brain mitochondrial electron transport chain activity by dopamine oxidation products during extended in vitro incubation: implications for Parkinson's disease.
    Khan FH; Sen T; Maiti AK; Jana S; Chatterjee U; Chakrabarti S
    Biochim Biophys Acta; 2005 Jun; 1741(1-2):65-74. PubMed ID: 15925494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of dopamine and related catechols in dopaminergic brain regions in Parkinson's disease and during ageing in non-Parkinsonian subjects.
    Fornstedt Wallin B
    J Neural Transm (Vienna); 2024 Mar; 131(3):213-228. PubMed ID: 38238531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of brain mitochondrial respiration by dopamine and its metabolites: implications for Parkinson's disease and catecholamine-associated diseases.
    Gluck MR; Zeevalk GD
    J Neurochem; 2004 Nov; 91(4):788-95. PubMed ID: 15525332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of brain mitochondrial respiration by dopamine: involvement of H(2)O(2) and hydroxyl radicals but not glutathione-protein-mixed disulfides.
    Gluck M; Ehrhart J; Jayatilleke E; Zeevalk GD
    J Neurochem; 2002 Jul; 82(1):66-74. PubMed ID: 12091466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide and DOPAC-induced cell death: from GSH depletion to mitochondrial energy crisis.
    Nunes C; Barbosa RM; Almeida L; Laranjinha J
    Mol Cell Neurosci; 2011 Sep; 48(1):94-103. PubMed ID: 21708261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic stress in PC12 cells induces the formation of the endogenous dopaminergic neurotoxin, 3,4-dihydroxyphenylacetaldehyde.
    Lamensdorf I; Eisenhofer G; Harvey-White J; Hayakawa Y; Kirk K; Kopin IJ
    J Neurosci Res; 2000 May; 60(4):552-8. PubMed ID: 10797558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.
    Paul R; Choudhury A; Kumar S; Giri A; Sandhir R; Borah A
    PLoS One; 2017; 12(2):e0171285. PubMed ID: 28170429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain mitochondria catalyze the oxidation of 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxyli c acid (DHBT-1) to intermediates that irreversibly inhibit complex I and scavenge glutathione: potential relevance to the pathogenesis of Parkinson's disease.
    Li H; Shen XM; Dryhurst G
    J Neurochem; 1998 Nov; 71(5):2049-62. PubMed ID: 9798930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: possible mechanisms of formation involving reactive oxygen species.
    Spencer JP; Jenner P; Daniel SE; Lees AJ; Marsden DC; Halliwell B
    J Neurochem; 1998 Nov; 71(5):2112-22. PubMed ID: 9798937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of the striatal dopaminergic neuron system by carbon monoxide exposure in free-moving rats, as determined by in vivo brain microdialysis.
    Hara S; Mukai T; Kurosaki K; Kuriiwa F; Endo T
    Arch Toxicol; 2002 Oct; 76(10):596-605. PubMed ID: 12373456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio.
    Titov DV; Cracan V; Goodman RP; Peng J; Grabarek Z; Mootha VK
    Science; 2016 Apr; 352(6282):231-5. PubMed ID: 27124460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional effects of amphetamine, cocaine, nomifensine and GBR 12909 on the dynamics of dopamine release and metabolism in the rat brain.
    Karoum F; Chrapusta SJ; Brinjak R; Hitri A; Wyatt RJ
    Br J Pharmacol; 1994 Dec; 113(4):1391-9. PubMed ID: 7889297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron- and manganese-catalyzed autoxidation of dopamine in the presence of L-cysteine: possible insights into iron- and manganese-mediated dopaminergic neurotoxicity.
    Shen XM; Dryhurst G
    Chem Res Toxicol; 1998 Jul; 11(7):824-37. PubMed ID: 9671546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated cerebrospinal fluid ratios of cysteinyl-dopamine/3,4-dihydroxyphenylacetic acid in parkinsonian synucleinopathies.
    Goldstein DS; Holmes C; Sullivan P; Jinsmaa Y; Kopin IJ; Sharabi Y
    Parkinsonism Relat Disord; 2016 Oct; 31():79-86. PubMed ID: 27474472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3,4-Dihydroxyphenylacetaldehyde Is More Efficient than Dopamine in Oligomerizing and Quinonizing
    Jinsmaa Y; Isonaka R; Sharabi Y; Goldstein DS
    J Pharmacol Exp Ther; 2020 Feb; 372(2):157-165. PubMed ID: 31744850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine oxidation products inhibit Na+, K+-ATPase activity in crude synaptosomal-mitochondrial fraction from rat brain.
    Khan FH; Sen T; Chakrabarti S
    Free Radic Res; 2003 Jun; 37(6):597-601. PubMed ID: 12868486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative metabolites of 5-S-cysteinyldopamine inhibit the alpha-ketoglutarate dehydrogenase complex: possible relevance to the pathogenesis of Parkinson's disease.
    Shen XM; Li H; Dryhurst G
    J Neural Transm (Vienna); 2000; 107(8-9):959-78. PubMed ID: 11041275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.