These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 21463869)

  • 1. Fabrication of nano-indented cavities on Au for the detection of chemically-adsorbed DTNB molecular probes through SERS effect.
    Chang CW; Liao JD; Chang HC; Lin LK; Lin YY; Weng CC
    J Colloid Interface Sci; 2011 Jun; 358(2):384-91. PubMed ID: 21463869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of surface-enhanced Raman scattering of C60 Langmuir-Blodgett film on a new substrate.
    Xu G; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jun; 70(1):104-8. PubMed ID: 17889595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonics-based nanostructures for surface-enhanced Raman scattering bioanalysis.
    Vo-Dinh T; Yan F; Stokes DL
    Methods Mol Biol; 2005; 300():255-83. PubMed ID: 15657488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning plasmons on nano-structured substrates for NIR-SERS.
    Mahajan S; Abdelsalam M; Suguwara Y; Cintra S; Russell A; Baumberg J; Bartlett P
    Phys Chem Chem Phys; 2007 Jan; 9(1):104-9. PubMed ID: 17164891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring three-dimensional nanosystems with Raman spectroscopy: methylene blue adsorbed on thiol and sulfur monolayers on gold.
    Tognalli NG; Fainstein A; Vericat C; Vela ME; Salvarezza RC
    J Phys Chem B; 2006 Jan; 110(1):354-60. PubMed ID: 16471542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of the film of gold nanowire arrays on surface enhanced Raman scattering].
    Zhai XF; Mu C; Xu DS; Tong LM; Zhu T; Du WM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2329-32. PubMed ID: 19123400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid method for detection of genetically modified organisms based on magnetic separation and surface-enhanced Raman scattering.
    Guven B; Boyacı İH; Tamer U; Çalık P
    Analyst; 2012 Jan; 137(1):202-8. PubMed ID: 22049365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AuNPs@mesoSiO2 composites for SERS detection of DTNB molecule.
    Lin CC; Chang CW
    Biosens Bioelectron; 2014 Jan; 51():297-303. PubMed ID: 23978453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering.
    Kim JH; Kang T; Yoo SM; Lee SY; Kim B; Choi YK
    Nanotechnology; 2009 Jun; 20(23):235302. PubMed ID: 19448293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-enhanced Raman scattering-active nanostructures and strategies for bioassays.
    Jun BH; Kim G; Noh MS; Kang H; Kim YK; Cho MH; Jeong DH; Lee YS
    Nanomedicine (Lond); 2011 Oct; 6(8):1463-80. PubMed ID: 22026382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deposition method for preparing SERS-active gold nanoparticle substrates.
    Kho KW; Shen ZX; Zeng HC; Soo KC; Olivo M
    Anal Chem; 2005 Nov; 77(22):7462-71. PubMed ID: 16285701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple synthetic route for SERS-active gold nanoparticles substrate with controlled shape and organization.
    Bechelany M; Brodard P; Elias J; Brioude A; Michler J; Philippe L
    Langmuir; 2010 Sep; 26(17):14364-71. PubMed ID: 20715801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles.
    Yang Z; Li Y; Li Z; Wu D; Kang J; Xu H; Sun M
    J Chem Phys; 2009 Jun; 130(23):234705. PubMed ID: 19548748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide mesocrystals as templates to create an Au surface with stronger surface-enhanced Raman spectroscopic properties.
    Su Y; He Q; Yan X; Fei J; Cui Y; Li J
    Chemistry; 2011 Mar; 17(12):3370-5. PubMed ID: 21341331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus.
    Lin YY; Liao JD; Ju YH; Chang CW; Shiau AL
    Nanotechnology; 2011 May; 22(18):185308. PubMed ID: 21427472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SERS studies of the adsorption of guanine derivatives on gold colloidal nanoparticles.
    Pergolese B; Bonifacio A; Bigotto A
    Phys Chem Chem Phys; 2005 Oct; 7(20):3610-3. PubMed ID: 16294239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering.
    Yang Y; Tanemura M; Huang Z; Jiang D; Li ZY; Huang YP; Kawamura G; Yamaguchi K; Nogami M
    Nanotechnology; 2010 Aug; 21(32):325701. PubMed ID: 20639588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma-induced formation of Ag nanodots for ultra-high-enhancement surface-enhanced Raman scattering substrates.
    Li Z; Tong WM; Stickle WF; Neiman DL; Williams RS; Hunter LL; Talin AA; Li D; Brueck SR
    Langmuir; 2007 Apr; 23(9):5135-8. PubMed ID: 17385901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive vapor detection with surface-enhanced Raman scattering-active gold nanoparticle immobilized flow-through multihole capillaries.
    Khaing Oo MK; Guo Y; Reddy K; Liu J; Fan X
    Anal Chem; 2012 Apr; 84(7):3376-81. PubMed ID: 22413933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.