BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21463939)

  • 1. Thermal conversion of alkaline lignin and its structured derivatives to porous carbonized materials.
    Kijima M; Hirukawa T; Hanawa F; Hata T
    Bioresour Technol; 2011 May; 102(10):6279-85. PubMed ID: 21463939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal carbonization of anaerobically digested maize silage.
    Mumme J; Eckervogt L; Pielert J; Diakité M; Rupp F; Kern J
    Bioresour Technol; 2011 Oct; 102(19):9255-60. PubMed ID: 21802284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of carbons derived from cellulose and lignin and their oxidative behavior.
    Xie X; Goodell B; Zhang D; Nagle DC; Qian Y; Peterson ML; Jellison J
    Bioresour Technol; 2009 Mar; 100(5):1797-802. PubMed ID: 19027291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of activated carbon with large specific surface area from reed black liquor.
    Sun Y; Zhang JP; Yang G; Li ZH
    Environ Technol; 2007 May; 28(5):491-7. PubMed ID: 17615958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol.
    Yuan Z; Cheng S; Leitch M; Xu CC
    Bioresour Technol; 2010 Dec; 101(23):9308-13. PubMed ID: 20667719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of activated carbon from a new raw lignocellulosic material: flamboyant (Delonix regia) pods.
    Vargas AM; Cazetta AL; Garcia CA; Moraes JC; Nogami EM; Lenzi E; Costa WF; Almeida VC
    J Environ Manage; 2011 Jan; 92(1):178-84. PubMed ID: 20869158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable mesoporous carbons as storage and controlled-delivery media for functional molecules.
    Saha D; Payzant EA; Kumbhar AS; Naskar AK
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5868-74. PubMed ID: 23731336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the demineralisation on the chemical activation of Kraft lignin with orthophosphoric acid.
    Fierro V; Torné-Fernández V; Celzard A; Montané D
    J Hazard Mater; 2007 Oct; 149(1):126-33. PubMed ID: 17509755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of carbon black from rice husk by hydrolysis, carbonization and pyrolysis.
    Wang L; Wang X; Zou B; Ma X; Qu Y; Rong C; Li Y; Su Y; Wang Z
    Bioresour Technol; 2011 Sep; 102(17):8220-4. PubMed ID: 21745737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkali promoted the adsorption of toluene by adjusting the surface properties of lignin-derived carbon fibers.
    Song M; Yu L; Song B; Meng F; Tang X
    Environ Sci Pollut Res Int; 2019 Aug; 26(22):22284-22294. PubMed ID: 31152422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrothermal carbonization of lignocellulosic biomass.
    Xiao LP; Shi ZJ; Xu F; Sun RC
    Bioresour Technol; 2012 Aug; 118():619-23. PubMed ID: 22698445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin Refinery Using Organosolv Process for Nanoporous Carbon Synthesis.
    Prasetyo I; Permatasari PR; Laksmana WT; Rochmadi R; Oh WC; Ariyanto T
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32731572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process effects on activated carbon with large specific surface area from corn cob.
    Cao Q; Xie KC; Lv YK; Bao WR
    Bioresour Technol; 2006 Jan; 97(1):110-5. PubMed ID: 16154508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of carbon nanotubes and porous carbons from printed circuit board waste pyrolysis oil.
    Quan C; Li A; Gao N
    J Hazard Mater; 2010 Jul; 179(1-3):911-7. PubMed ID: 20400225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors.
    Gonzalez-Serrano E; Cordero T; Rodriguez-Mirasol J; Cotoruelo L; Rodriguez JJ
    Water Res; 2004 Jul; 38(13):3043-50. PubMed ID: 15261542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous properties of activated carbons from waste newspaper prepared by chemical and physical activation.
    Okada K; Yamamoto N; Kameshima Y; Yasumori A
    J Colloid Interface Sci; 2003 Jun; 262(1):179-93. PubMed ID: 16256594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass?
    Bilgic E; Yaman S; Haykiri-Acma H; Kucukbayrak S
    Bioresour Technol; 2016 Jan; 200():201-7. PubMed ID: 26492172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis.
    Wongsiriamnuay T; Tippayawong N
    Bioresour Technol; 2010 Jul; 101(14):5638-44. PubMed ID: 20189804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production and characterization of lignocellulosic biomass-derived activated carbon.
    Namazi AB; Jia CQ; Allen DG
    Water Sci Technol; 2010; 62(11):2637-46. PubMed ID: 21099052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of porosity by using isoreticular zeolitic imidazolate frameworks (IRZIFs) as a template for porous carbon synthesis.
    Pachfule P; Biswal BP; Banerjee R
    Chemistry; 2012 Sep; 18(36):11399-408. PubMed ID: 22829466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.