These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 21464133)
1. Domains II and III of Bacillus thuringiensis Cry1Ab toxin remain exposed to the solvent after insertion of part of domain I into the membrane. Zavala LE; Pardo-López L; Cantón PE; Gómez I; Soberón M; Bravo A J Biol Chem; 2011 May; 286(21):19109-17. PubMed ID: 21464133 [TBL] [Abstract][Full Text] [Related]
2. All domains of Cry1A toxins insert into insect brush border membranes. Nair MS; Dean DH J Biol Chem; 2008 Sep; 283(39):26324-31. PubMed ID: 18635544 [TBL] [Abstract][Full Text] [Related]
3. Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin. Arenas I; Bravo A; Soberón M; Gómez I J Biol Chem; 2010 Apr; 285(17):12497-503. PubMed ID: 20177063 [TBL] [Abstract][Full Text] [Related]
4. A major conformational change of N-terminal helices of Bacillus thuringiensis Cry1Ab insecticidal protein is necessary for membrane insertion and toxicity. Pacheco S; Gómez I; Soberón M; Bravo A FEBS J; 2023 May; 290(10):2692-2705. PubMed ID: 36560841 [TBL] [Abstract][Full Text] [Related]
5. Membrane insertion of the Bacillus thuringiensis Cry1Ab toxin: single mutation in domain II block partitioning of the toxin into the brush border membrane. Nair MS; Liu XS; Dean DH Biochemistry; 2008 May; 47(21):5814-22. PubMed ID: 18457427 [TBL] [Abstract][Full Text] [Related]
6. Specific epitopes of domains II and III of Bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta. Gómez I; Arenas I; Benitez I; Miranda-Ríos J; Becerril B; Grande R; Almagro JC; Bravo A; Soberón M J Biol Chem; 2006 Nov; 281(45):34032-9. PubMed ID: 16968705 [TBL] [Abstract][Full Text] [Related]
8. Mutations in domain I interhelical loops affect the rate of pore formation by the Bacillus thuringiensis Cry1Aa toxin in insect midgut brush border membrane vesicles. Lebel G; Vachon V; Préfontaine G; Girard F; Masson L; Juteau M; Bah A; Larouche G; Vincent C; Laprade R; Schwartz JL Appl Environ Microbiol; 2009 Jun; 75(12):3842-50. PubMed ID: 19376918 [TBL] [Abstract][Full Text] [Related]
9. The pre-pore from Bacillus thuringiensis Cry1Ab toxin is necessary to induce insect death in Manduca sexta. Jiménez-Juárez N; Muñoz-Garay C; Gómez I; Gill SS; Soberón M; Bravo A Peptides; 2008 Feb; 29(2):318-23. PubMed ID: 18226424 [TBL] [Abstract][Full Text] [Related]
10. Bacillus thuringiensis Cry1Ab Domain III β-22 Mutants with Enhanced Toxicity to Spodoptera frugiperda (J. E. Smith). Gómez I; Ocelotl J; Sánchez J; Aguilar-Medel S; Peña-Chora G; Lina-Garcia L; Bravo A; Soberón M Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32887720 [TBL] [Abstract][Full Text] [Related]
11. Dominant negative mutants of Bacillus thuringiensis Cry1Ab toxin function as anti-toxins: demonstration of the role of oligomerization in toxicity. Rodríguez-Almazán C; Zavala LE; Muñoz-Garay C; Jiménez-Juárez N; Pacheco S; Masson L; Soberón M; Bravo A PLoS One; 2009; 4(5):e5545. PubMed ID: 19440244 [TBL] [Abstract][Full Text] [Related]
12. Tryptophan spectroscopy studies and black lipid bilayer analysis indicate that the oligomeric structure of Cry1Ab toxin from Bacillus thuringiensis is the membrane-insertion intermediate. Rausell C; Muñoz-Garay C; Miranda-CassoLuengo R; Gómez I; Rudiño-Piñera E; Soberón M; Bravo A Biochemistry; 2004 Jan; 43(1):166-74. PubMed ID: 14705942 [TBL] [Abstract][Full Text] [Related]
13. Dominant negative phenotype of Bacillus thuringiensis Cry1Ab, Cry11Aa and Cry4Ba mutants suggest hetero-oligomer formation among different Cry toxins. Carmona D; Rodríguez-Almazán C; Muñoz-Garay C; Portugal L; Pérez C; de Maagd RA; Bakker P; Soberón M; Bravo A PLoS One; 2011; 6(5):e19952. PubMed ID: 21603577 [TBL] [Abstract][Full Text] [Related]
14. The C-terminal protoxin region of Peña-Cardeña A; Grande R; Sánchez J; Tabashnik BE; Bravo A; Soberón M; Gómez I J Biol Chem; 2018 Dec; 293(52):20263-20272. PubMed ID: 30385510 [No Abstract] [Full Text] [Related]
15. Enhancement of insecticidal activity of Bacillus thuringiensis Cry1A toxins by fragments of a toxin-binding cadherin correlates with oligomer formation. Pacheco S; Gómez I; Gill SS; Bravo A; Soberón M Peptides; 2009 Mar; 30(3):583-8. PubMed ID: 18778745 [TBL] [Abstract][Full Text] [Related]
16. Chemical modification of Bacillus thuringiensis Cry1Aa toxin single-cysteine mutants reveals the importance of domain I structural elements in the mechanism of pore formation. Girard F; Vachon V; Lebel G; Préfontaine G; Schwartz JL; Masson L; Laprade R Biochim Biophys Acta; 2009 Feb; 1788(2):575-80. PubMed ID: 19046941 [TBL] [Abstract][Full Text] [Related]
17. Rearrangement of N-Terminal α-Helices of Pacheco S; Quiliche JPJ; Gómez I; Sánchez J; Soberón M; Bravo A Toxins (Basel); 2020 Oct; 12(10):. PubMed ID: 33049917 [TBL] [Abstract][Full Text] [Related]
18. Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a "ping pong" binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors. Pacheco S; Gómez I; Arenas I; Saab-Rincon G; Rodríguez-Almazán C; Gill SS; Bravo A; Soberón M J Biol Chem; 2009 Nov; 284(47):32750-7. PubMed ID: 19808680 [TBL] [Abstract][Full Text] [Related]
19. Structural changes of the Cry1Ac oligomeric pre-pore from bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion. Pardo-López L; Gómez I; Rausell C; Sanchez J; Soberón M; Bravo A Biochemistry; 2006 Aug; 45(34):10329-36. PubMed ID: 16922508 [TBL] [Abstract][Full Text] [Related]
20. Biochemical characterization of Bacillus thuringiensis cytolytic toxins in association with a phospholipid bilayer. Du J; Knowles BH; Li J; Ellar DJ Biochem J; 1999 Feb; 338 ( Pt 1)(Pt 1):185-93. PubMed ID: 9931315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]