These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 21464522)

  • 1. Sequenced subjective accents for brain-computer interfaces.
    Vlek RJ; Schaefer RS; Gielen CC; Farquhar JD; Desain P
    J Neural Eng; 2011 Jun; 8(3):036002. PubMed ID: 21464522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shared mechanisms in perception and imagery of auditory accents.
    Vlek RJ; Schaefer RS; Gielen CC; Farquhar JD; Desain P
    Clin Neurophysiol; 2011 Aug; 122(8):1526-32. PubMed ID: 21353631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of selective attention to auditory stimuli: toward vision-free brain-computer interfacing.
    Kim DW; Hwang HJ; Lim JH; Lee YH; Jung KY; Im CH
    J Neurosci Methods; 2011 Apr; 197(1):180-5. PubMed ID: 21335029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online classification of single EEG trials during finger movements.
    Lehtonen J; Jylänki P; Kauhanen L; Sams M
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):713-20. PubMed ID: 18270008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network.
    Hazrati MKh; Erfanian A
    Med Eng Phys; 2010 Sep; 32(7):730-9. PubMed ID: 20510641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cognitive tasks for driving a brain-computer interfacing system: a pilot study.
    Curran E; Sykacek P; Stokes M; Roberts SJ; Penny W; Johnsrude I; Owen AM
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):48-54. PubMed ID: 15068187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a hybrid brain-computer interface based on imagined movement and visual attention.
    Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G
    J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain lateralization of metrical accenting in musicians.
    Abecasis D; Brochard R; Del Río D; Dufour A; Ortiz T
    Ann N Y Acad Sci; 2009 Jul; 1169():74-8. PubMed ID: 19673756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An auditory oddball brain-computer interface for binary choices.
    Halder S; Rea M; Andreoni R; Nijboer F; Hammer EM; Kleih SC; Birbaumer N; Kübler A
    Clin Neurophysiol; 2010 Apr; 121(4):516-23. PubMed ID: 20093075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Name that tune: decoding music from the listening brain.
    Schaefer RS; Farquhar J; Blokland Y; Sadakata M; Desain P
    Neuroimage; 2011 May; 56(2):843-9. PubMed ID: 20541612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auditory and spatial navigation imagery in Brain-Computer Interface using optimized wavelets.
    Cabrera AF; Dremstrup K
    J Neurosci Methods; 2008 Sep; 174(1):135-46. PubMed ID: 18656500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A robust sensor-selection method for P300 brain-computer interfaces.
    Cecotti H; Rivet B; Congedo M; Jutten C; Bertrand O; Maby E; Mattout J
    J Neural Eng; 2011 Feb; 8(1):016001. PubMed ID: 21245524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A portable auditory P300 brain-computer interface with directional cues.
    Käthner I; Ruf CA; Pasqualotto E; Braun C; Birbaumer N; Halder S
    Clin Neurophysiol; 2013 Feb; 124(2):327-38. PubMed ID: 22959257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.
    Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Music and natural sounds in an auditory steady-state response based brain-computer interface to increase user acceptance.
    Heo J; Baek HJ; Hong S; Chang MH; Lee JS; Park KS
    Comput Biol Med; 2017 May; 84():45-52. PubMed ID: 28342407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast attainment of computer cursor control with noninvasively acquired brain signals.
    Bradberry TJ; Gentili RJ; Contreras-Vidal JL
    J Neural Eng; 2011 Jun; 8(3):036010. PubMed ID: 21493978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-trial EEG source reconstruction for brain-computer interface.
    Noirhomme Q; Kitney RI; Macq B
    IEEE Trans Biomed Eng; 2008 May; 55(5):1592-601. PubMed ID: 18440905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.