BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21464535)

  • 1. Characterization of the scattered radiation field around an x-ray tube.
    Struelens L; Kauwenberghs K; Vanhavere F
    Phys Med Biol; 2011 May; 56(9):2731-41. PubMed ID: 21464535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An investigation of backscatter factors for kilovoltage x-rays: a comparison between Monte Carlo simulations and Gafchromic EBT film measurements.
    Kim J; Hill R; Claridge Mackonis E; Kuncic Z
    Phys Med Biol; 2010 Feb; 55(3):783-97. PubMed ID: 20071763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of electron contamination of a 6 MV x-ray beam on near surface diode dosimetry.
    Edwards CR; Mountford PJ; Moloney AJ
    Phys Med Biol; 2006 Dec; 51(24):6471-82. PubMed ID: 17148830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo study of a 60Co calibration field of the Dosimetry Laboratory Seibersdorf.
    Hranitzky C; Stadtmann H
    Radiat Prot Dosimetry; 2007; 125(1-4):153-6. PubMed ID: 17337744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose distributions of X-rays in water: measurement with TL-dosimeters and comparison with Monte-Carlo calculations.
    Servomaa A; Tapiovaara M
    Eur J Radiol; 1984 Aug; 4(3):232-5. PubMed ID: 6468421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tenth value layers for 60Co gamma rays and for 4, 6, 10, 15, and 18 MV x rays in concrete for beams of cone angles between 0 degrees and 14 degrees calculated by Monte Carlo simulation.
    Jaradat AK; Biggs PJ
    Health Phys; 2007 May; 92(5):456-63. PubMed ID: 17429304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo commissioning of clinical electron beams using large field measurements.
    O'Shea TP; Sawkey DL; Foley MJ; Faddegon BA
    Phys Med Biol; 2010 Jul; 55(14):4083-105. PubMed ID: 20601775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do angles of obliquity apply to 30 degrees scattered radiation from megavoltage beams?
    Biggs PJ; Styczynski JR
    Health Phys; 2008 Oct; 95(4):425-32. PubMed ID: 18784515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems.
    Paelinck L; Reynaert N; Thierens H; De Neve W; De Wagter C
    Phys Med Biol; 2005 May; 50(9):2055-69. PubMed ID: 15843736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of kilovoltage x-ray beams used for cone-beam computed tomography in radiation therapy.
    Ding GX; Duggan DM; Coffey CW
    Phys Med Biol; 2007 Mar; 52(6):1595-615. PubMed ID: 17327651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE.
    Panettieri V; Barsoum P; Westermark M; Brualla L; Lax I
    Radiother Oncol; 2009 Oct; 93(1):94-101. PubMed ID: 19541380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo determination of the conversion coefficients Hp(3)/Ka in a right cylinder phantom with 'PENELOPE' code. Comparison with 'MCNP' simulations.
    Daures J; Gouriou J; Bordy JM
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):37-42. PubMed ID: 21242167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code.
    Panettieri V; Duch MA; Jornet N; Ginjaume M; Carrasco P; Badal A; Ortega X; Ribas M
    Phys Med Biol; 2007 Jan; 52(1):303-16. PubMed ID: 17183143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of source parameters on large-field electron beam profiles calculated using Monte Carlo methods.
    Weinberg R; Antolak JA; Starkschall G; Kudchadker RJ; White RA; Hogstrom KR
    Phys Med Biol; 2009 Jan; 54(1):105-16. PubMed ID: 19075360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of scatter in diagnostic X-ray rooms.
    McVey G; Weatherburn H
    Br J Radiol; 2004 Jan; 77(913):28-38. PubMed ID: 14988135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Monte Carlo (MC) based individual calibration method for in vivo x-ray fluorescence analysis (XRF).
    Hansson M; Isaksson M
    Phys Med Biol; 2007 Apr; 52(7):2009-19. PubMed ID: 17374924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of small field sizes, penumbra, spot size and measurement depth on perturbation factors for microionization chambers.
    Crop F; Reynaert N; Pittomvils G; Paelinck L; De Wagter C; Vakaet L; Thierens H
    Phys Med Biol; 2009 May; 54(9):2951-69. PubMed ID: 19384005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the diaphragm of free-air ionisation chamber for X-ray air-kerma measurements.
    Kurosawa T; Takata N; Saito N
    Radiat Prot Dosimetry; 2011 Jul; 146(1-3):195-7. PubMed ID: 21498414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method.
    Titt U; Zheng Y; Vassiliev ON; Newhauser WD
    Phys Med Biol; 2008 Jan; 53(2):487-504. PubMed ID: 18185001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full modelling of the MOSAIC animal PET system based on the GATE Monte Carlo simulation code.
    Merheb C; Petegnief Y; Talbot JN
    Phys Med Biol; 2007 Feb; 52(3):563-76. PubMed ID: 17228105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.