BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21464602)

  • 1. Identification of metabolites from phenanthrene oxidation by phenoloxidases and dioxygenases of Polyporus sp. S133.
    Hadibarata T; Tachibana S; Askari M
    J Microbiol Biotechnol; 2011 Mar; 21(3):299-304. PubMed ID: 21464602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of phenanthrene degradation by strain polyporus sp. S133.
    Hadibarata T; Tachibana S
    J Environ Sci (China); 2010; 22(1):142-9. PubMed ID: 20397398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium.
    Hadibarata T; Tachibana S; Itoh K
    J Hazard Mater; 2009 May; 164(2-3):911-7. PubMed ID: 18835091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of metabolites from benzo[a]pyrene oxidation by ligninolytic enzymes of Polyporus sp. S133.
    Hadibarata T; Kristanti RA
    J Environ Manage; 2012 Nov; 111():115-9. PubMed ID: 22835655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of pyrene biodegradation by white-rot fungus Polyporus sp. S133.
    Hadibarata T; Kristanti RA; Fulazzaky MA; Nugroho AE
    Biotechnol Appl Biochem; 2012; 59(6):465-70. PubMed ID: 23586956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligninolytic fungus Polyporus sp. S133 mediated metabolic degradation of fluorene.
    Lazim ZM; Hadibarata T
    Braz J Microbiol; 2016; 47(3):610-6. PubMed ID: 27287336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decolorization and degradation mechanism of Amaranth by Polyporus sp. S133.
    Hadibarata T; Nor NM
    Bioprocess Biosyst Eng; 2014 Sep; 37(9):1879-85. PubMed ID: 24623464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of phenanthrene by the rhizobacterium Ensifer meliloti.
    Muratova A; Pozdnyakova N; Makarov O; Baboshin M; Baskunov B; Myasoedova N; Golovleva L; Turkovskaya O
    Biodegradation; 2014 Nov; 25(6):787-95. PubMed ID: 25052918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of phenanthrene and anthracene by Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic bacterium.
    Zeinali M; Vossoughi M; Ardestani SK
    J Appl Microbiol; 2008 Aug; 105(2):398-406. PubMed ID: 18312570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1.
    Moody JD; Freeman JP; Doerge DR; Cerniglia CE
    Appl Environ Microbiol; 2001 Apr; 67(4):1476-83. PubMed ID: 11282593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenanthrene degradation in Arthrobacter sp. P1-1: initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids.
    Seo JS; Keum YS; Hu Y; Lee SE; Li QX
    Chemosphere; 2006 Dec; 65(11):2388-94. PubMed ID: 16777186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium.
    Hammel KE; Gai WZ; Green B; Moen MA
    Appl Environ Microbiol; 1992 Jun; 58(6):1832-8. PubMed ID: 1622259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of phenanthrene by a fungal laccase in the presence of 1-hydroxybenzotriazole and unsaturated lipids.
    Böhmer S; Messner K; Srebotnik E
    Biochem Biophys Res Commun; 1998 Mar; 244(1):233-8. PubMed ID: 9514895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. O-phthalic acid, a dead-end product in one of the two pathways of phenanthrene degradation in Pseudomonas sp. strain PP2.
    Krishnan S; Prabhu Y; Phale PS
    Indian J Biochem Biophys; 2004 Oct; 41(5):227-32. PubMed ID: 22900278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel evidence of cytochrome P450-catalyzed oxidation of phenanthrene in Phanerochaete chrysosporium under ligninolytic conditions.
    Ning D; Wang H; Ding C; Lu H
    Biodegradation; 2010 Nov; 21(6):889-901. PubMed ID: 20333538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regioselectivity and enantioselectivity of naphthalene dioxygenase during arene cis-dihydroxylation: control by phenylalanine 352 in the alpha subunit.
    Parales RE; Resnick SM; Yu CL; Boyd DR; Sharma ND; Gibson DT
    J Bacteriol; 2000 Oct; 182(19):5495-504. PubMed ID: 10986254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of phenanthrene via meta-cleavage of 2-hydroxy-1-naphthoic acid by Ochrobactrum sp. strain PWTJD.
    Ghosal D; Chakraborty J; Khara P; Dutta TK
    FEMS Microbiol Lett; 2010 Dec; 313(2):103-10. PubMed ID: 20964703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation pathways of phenanthrene by Sinorhizobium sp. C4.
    Keum YS; Seo JS; Hu Y; Li QX
    Appl Microbiol Biotechnol; 2006 Aug; 71(6):935-41. PubMed ID: 16317542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation.
    Prabhu Y; Phale PS
    Appl Microbiol Biotechnol; 2003 May; 61(4):342-51. PubMed ID: 12743764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavovirens.
    Sutherland JB; Freeman JP; Selby AL; Fu PP; Miller DW; Cerniglia CE
    Arch Microbiol; 1990; 154(3):260-6. PubMed ID: 2222121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.