BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21464904)

  • 1. Variations on fibrinogen-erythrocyte interactions during cell aging.
    Carvalho FA; de Oliveira S; Freitas T; Gonçalves S; Santos NC
    PLoS One; 2011 Mar; 6(3):e18167. PubMed ID: 21464904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes.
    Carvalho FA; Connell S; Miltenberger-Miltenyi G; Pereira SV; Tavares A; Ariëns RA; Santos NC
    ACS Nano; 2010 Aug; 4(8):4609-20. PubMed ID: 20731444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The
    Carvalho FA; Guedes AF; Duval C; Macrae FL; Swithenbank L; Farrell DH; Ariëns RA; Santos NC
    Int J Nanomedicine; 2018; 13():1985-1992. PubMed ID: 29662311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrinogen-erythrocyte binding and hemorheology measurements in the assessment of essential arterial hypertension patients.
    Guedes AF; Moreira C; Nogueira JB; Santos NC; Carvalho FA
    Nanoscale; 2019 Feb; 11(6):2757-2766. PubMed ID: 30672545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural modifications in membrane glycoproteins during the erythrocyte life-span.
    Balduini C; Brovelli A; Balduini CL; Ascari E
    Ric Clin Lab; 1979; 9(1):13-22. PubMed ID: 493810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The binding of fibrinogen and fibrinogen degradation products to the erythrocyte membrane and its relationship to haemorheology.
    Rampling MW
    Acta Biol Med Ger; 1981; 40(4-5):373-8. PubMed ID: 7315086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of neuraminidase on concanavalin A agglutination of erythrocytes: evidence for adsorption of neuraminidase to erythrocyte membrane.
    LaMont JT; Isselbacher KJ
    J Cell Physiol; 1977 Mar; 90(3):565-72. PubMed ID: 558203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy as a tool to evaluate the risk of cardiovascular diseases in patients.
    Guedes AF; Carvalho FA; Malho I; Lousada N; Sargento L; Santos NC
    Nat Nanotechnol; 2016 Aug; 11(8):687-92. PubMed ID: 27183056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red cell aging. I. Surface charge density and sialic acid content of density-fractionated human erythrocytes.
    Seaman GV; Knox RJ; Nordt FJ; Regan DH
    Blood; 1977 Dec; 50(6):1001-11. PubMed ID: 922155
    [No Abstract]   [Full Text] [Related]  

  • 10. Integrin-associated protein (CD47) is a putative mediator for soluble fibrinogen interaction with human red blood cells membrane.
    De Oliveira S; Vitorino de Almeida V; Calado A; Rosário HS; Saldanha C
    Biochim Biophys Acta; 2012 Mar; 1818(3):481-90. PubMed ID: 22079249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between sialic acid content and peanut agglutinin binding on senescent and enzyme treated human erythrocytes.
    Skutelsky E; Marikovsky Y; Cividalli L; Danon D
    Mech Ageing Dev; 1985 Jun; 31(1):13-23. PubMed ID: 4033233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essential arterial hypertension patients present higher cell adhesion forces, contributing to fibrinogen-dependent cardiovascular risk.
    Guedes AF; Carvalho FA; Moreira C; Nogueira JB; Santos NC
    Nanoscale; 2017 Oct; 9(39):14897-14906. PubMed ID: 28949356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical model of fibrinogen-mediated erythrocyte-erythrocyte adhesion.
    Lopes CS; Curty J; Carvalho FA; Hernández-Machado A; Kinoshita K; Santos NC; Travasso RDM
    Commun Biol; 2023 Feb; 6(1):192. PubMed ID: 36801914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sialic acids rather than glycosaminoglycans affect normal and sickle red blood cell rheology by binding to four major sites on fibrinogen.
    Gondelaud F; Connes P; Nader E; Renoux C; Fort R; Gauthier A; Joly P; Ricard-Blum S
    Am J Hematol; 2020 Apr; 95(4):E77-E80. PubMed ID: 31903639
    [No Abstract]   [Full Text] [Related]  

  • 15. Sialic acids of young and old red blood cells in healthy subjects.
    Jakubowska-Solarska B; Solski J
    Med Sci Monit; 2000; 6(5):871-4. PubMed ID: 11208424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo behaviour of neuraminidase-treated rabbit erythrocytes and reticulocytes.
    Balduini CL; Ricevuti G; Sosso MC; Ascari E; Brovelli A; Balduini C
    Acta Haematol; 1977; 57(3):178-87. PubMed ID: 402779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decrease of carbohydrate in membrane glycoproteins during human erythrocyte ageing in vivo.
    Gattegno L; Perret G; Fabia F; Cornillot P
    Mech Ageing Dev; 1981 Jul; 16(3):205-19. PubMed ID: 7278393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erythrocyte aggregation: bridging by macromolecules and electrostatic repulsion by sialic acid.
    Izumida Y; Seiyama A; Maeda N
    Biochim Biophys Acta; 1991 Aug; 1067(2):221-6. PubMed ID: 1652285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial neuraminidase-mediated erythrocyte desialylation provokes cell surface aminophospholipid exposure.
    Qadri SM; Donkor DA; Nazy I; Branch DR; Sheffield WP
    Eur J Haematol; 2018 May; 100(5):502-510. PubMed ID: 29453885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical studies of membrane glycoproteins during red cell aging.
    Platt D; Norwig P
    Mech Ageing Dev; 1980; 14(1-2):119-26. PubMed ID: 6451778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.