BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 21465546)

  • 1. Spatially 2D-selective RF excitations using the PROPELLER trajectory: basic principles and application to MR spectroscopy of irregularly shaped single voxel.
    Busch MG; Finsterbusch J
    Magn Reson Med; 2011 Nov; 66(5):1218-25. PubMed ID: 21465546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-echo-time magnetic resonance spectroscopy of single voxel with arbitrary shape in the living human brain using segmented two-dimensional selective radiofrequency excitations based on a blipped-planar trajectory.
    Weber-Fahr W; Busch MG; Finsterbusch J
    Magn Reson Imaging; 2009 Jun; 27(5):664-71. PubMed ID: 19108976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eliminating side excitations in PROPELLER-based 2D-selective RF excitations.
    Busch MG; Finsterbusch J
    Magn Reson Med; 2012 Nov; 68(5):1383-9. PubMed ID: 22294489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hadamard-encoding combined with two-dimensional-selective radiofrequency excitations for flexible and efficient acquisitions of multiple voxels in MR spectroscopy.
    Busch MG; Finsterbusch J
    J Magn Reson Imaging; 2012 Apr; 35(4):976-83. PubMed ID: 22180189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmented 2D-selective RF excitations with weighted averaging and flip angle adaptation for MR spectroscopy of irregularly shaped voxel.
    Finsterbusch J; Busch MG
    Magn Reson Med; 2011 Aug; 66(2):333-40. PubMed ID: 21360589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast-spin-echo imaging of inner fields-of-view with 2D-selective RF excitations.
    Finsterbusch J
    J Magn Reson Imaging; 2010 Jun; 31(6):1530-7. PubMed ID: 20512911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional spatially-selective RF excitation pulses in echo-planar imaging.
    Rieseberg S; Frahm J; Finsterbusch J
    Magn Reson Med; 2002 Jun; 47(6):1186-93. PubMed ID: 12111965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gradient-echo line scan imaging using 2D-selective RF excitation.
    Finsterbusch J; Frahm J
    J Magn Reson; 2000 Nov; 147(1):17-25. PubMed ID: 11042043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. B0-informed variable density trajectory design for enhanced correction of off-resonance effects in parallel transmission.
    Schneider R; Ritter D; Haueisen J; Pfeuffer J
    Magn Reson Med; 2014 Apr; 71(4):1381-93. PubMed ID: 23716347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective excitation of two-dimensional arbitrarily shaped voxels with parallel excitation in spectroscopy.
    Snyder J; Haas M; Hennig J; Zaitsev M
    Magn Reson Med; 2012 Feb; 67(2):300-9. PubMed ID: 21721040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal scaling improves the signal-to-noise ratio of measurements with segmented 2D-selective radiofrequency excitations.
    Finsterbusch J; Busch MG; Larson PE
    Magn Reson Med; 2013 Dec; 70(6):1491-9. PubMed ID: 23440633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the performance of diffusion-weighted inner field-of-view echo-planar imaging based on 2D-selective radiofrequency excitations by tilting the excitation plane.
    Finsterbusch J
    J Magn Reson Imaging; 2012 Apr; 35(4):984-92. PubMed ID: 22170770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional neuroimaging of inner fields-of-view with 2D-selective RF excitations.
    Finsterbusch J
    Magn Reson Imaging; 2013 Sep; 31(7):1228-35. PubMed ID: 23602726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of three-dimensional wavelet encoding spectroscopic imaging: in vivo application and method comparison.
    Young R; Serrai H
    Magn Reson Med; 2009 Jan; 61(1):6-15. PubMed ID: 19097215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of 2D spatially selective MR spectroscopy using parallel excitation at 7 T.
    Patel G; Haas M; Darji N; Speck O
    Quant Imaging Med Surg; 2015 Jun; 5(3):344-55. PubMed ID: 26029637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective maximization of (31)P MR spectroscopic signals of in vivo human brain metabolites at 3T.
    Blenman RA; Port JD; Felmlee JP
    J Magn Reson Imaging; 2007 Mar; 25(3):628-34. PubMed ID: 17279535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional arbitrary voxel shapes in spectroscopy with submillisecond TEs.
    Snyder J; Haas M; Dragonu I; Hennig J; Zaitsev M
    NMR Biomed; 2012 Aug; 25(8):1000-6. PubMed ID: 22290622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slice-selective FID acquisition, localized by outer volume suppression (FIDLOVS) for (1)H-MRSI of the human brain at 7 T with minimal signal loss.
    Henning A; Fuchs A; Murdoch JB; Boesiger P
    NMR Biomed; 2009 Aug; 22(7):683-96. PubMed ID: 19259944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adiabatic localized correlation spectroscopy (AL-COSY): application in muscle and brain.
    Ramadan S; Mountford CE
    J Magn Reson Imaging; 2011 Jun; 33(6):1447-55. PubMed ID: 21591015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully adiabatic 31P 2D-CSI with reduced chemical shift displacement error at 7 T--GOIA-1D-ISIS/2D-CSI.
    Chmelík M; Kukurová IJ; Gruber S; Krššák M; Valkovič L; Trattnig S; Bogner W
    Magn Reson Med; 2013 May; 69(5):1233-44. PubMed ID: 22714782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.