These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 21465561)
21. Characterizing ribonucleases in vitro examples of synergies between biochemical and structural analysis. Arraiano CM; Barbas A; Amblar M Methods Enzymol; 2008; 447():131-60. PubMed ID: 19161842 [TBL] [Abstract][Full Text] [Related]
22. The role of 3'-5' exoribonucleases in RNA degradation. Andrade JM; Pobre V; Silva IJ; Domingues S; Arraiano CM Prog Mol Biol Transl Sci; 2009; 85():187-229. PubMed ID: 19215773 [TBL] [Abstract][Full Text] [Related]
23. Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family. Lorentzen E; Basquin J; Tomecki R; Dziembowski A; Conti E Mol Cell; 2008 Mar; 29(6):717-28. PubMed ID: 18374646 [TBL] [Abstract][Full Text] [Related]
24. Overexpression, purification, and properties of Escherichia coli ribonuclease II. Coburn GA; Mackie GA J Biol Chem; 1996 Jan; 271(2):1048-53. PubMed ID: 8557629 [TBL] [Abstract][Full Text] [Related]
25. Escherichia coli RNase R has dual activities, helicase and RNase. Awano N; Rajagopal V; Arbing M; Patel S; Hunt J; Inouye M; Phadtare S J Bacteriol; 2010 Mar; 192(5):1344-52. PubMed ID: 20023028 [TBL] [Abstract][Full Text] [Related]
26. New insights into the mechanism of RNA degradation by ribonuclease II: identification of the residue responsible for setting the RNase II end product. Barbas A; Matos RG; Amblar M; López-Viñas E; Gomez-Puertas P; Arraiano CM J Biol Chem; 2008 May; 283(19):13070-6. PubMed ID: 18337246 [TBL] [Abstract][Full Text] [Related]
27. The Escherichia coli RNA degradosome: structure, function and relationship in other ribonucleolytic multienzyme complexes. Carpousis AJ Biochem Soc Trans; 2002 Apr; 30(2):150-5. PubMed ID: 12035760 [TBL] [Abstract][Full Text] [Related]
28. RhlB helicase rather than enolase is the beta-subunit of the Escherichia coli polynucleotide phosphorylase (PNPase)-exoribonucleolytic complex. Lin PH; Lin-Chao S Proc Natl Acad Sci U S A; 2005 Nov; 102(46):16590-5. PubMed ID: 16275923 [TBL] [Abstract][Full Text] [Related]
29. Homodimeric structure and double-stranded RNA cleavage activity of the C-terminal RNase III domain of human dicer. Takeshita D; Zenno S; Lee WC; Nagata K; Saigo K; Tanokura M J Mol Biol; 2007 Nov; 374(1):106-20. PubMed ID: 17920623 [TBL] [Abstract][Full Text] [Related]
30. RNase R degrades non-stop mRNAs selectively in an SmpB-tmRNA-dependent manner. Richards J; Mehta P; Karzai AW Mol Microbiol; 2006 Dec; 62(6):1700-12. PubMed ID: 17087776 [TBL] [Abstract][Full Text] [Related]
31. Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro. Meng W; Nicholson AW Biochem J; 2008 Feb; 410(1):39-48. PubMed ID: 17953512 [TBL] [Abstract][Full Text] [Related]
32. Quaternary structure and catalytic activity of the Escherichia coli ribonuclease E amino-terminal catalytic domain. Callaghan AJ; Grossmann JG; Redko YU; Ilag LL; Moncrieffe MC; Symmons MF; Robinson CV; McDowall KJ; Luisi BF Biochemistry; 2003 Dec; 42(47):13848-55. PubMed ID: 14636052 [TBL] [Abstract][Full Text] [Related]
33. Sensing of 5' monophosphate by Escherichia coli RNase G can significantly enhance association with RNA and stimulate the decay of functional mRNA transcripts in vivo. Jourdan SS; McDowall KJ Mol Microbiol; 2008 Jan; 67(1):102-15. PubMed ID: 18078441 [TBL] [Abstract][Full Text] [Related]
34. Degradation of FinP antisense RNA from F-like plasmids: the RNA-binding protein, FinO, protects FinP from ribonuclease E. Jerome LJ; van Biesen T; Frost LS J Mol Biol; 1999 Jan; 285(4):1457-73. PubMed ID: 9917389 [TBL] [Abstract][Full Text] [Related]
35. The processive reaction mechanism of ribonuclease II. Cannistraro VJ; Kennell D J Mol Biol; 1994 Nov; 243(5):930-43. PubMed ID: 7966309 [TBL] [Abstract][Full Text] [Related]
36. Aromatic residues in RNase T stack with nucleobases to guide the sequence-specific recognition and cleavage of nucleic acids. Duh Y; Hsiao YY; Li CL; Huang JC; Yuan HS Protein Sci; 2015 Dec; 24(12):1934-41. PubMed ID: 26362012 [TBL] [Abstract][Full Text] [Related]
37. The SCO2299 gene from Streptomyces coelicolor A3(2) encodes a bifunctional enzyme consisting of an RNase H domain and an acid phosphatase domain. Ohtani N; Saito N; Tomita M; Itaya M; Itoh A FEBS J; 2005 Jun; 272(11):2828-37. PubMed ID: 15943815 [TBL] [Abstract][Full Text] [Related]
38. Reversible acetylation on Lys501 regulates the activity of RNase II. Song L; Wang G; Malhotra A; Deutscher MP; Liang W Nucleic Acids Res; 2016 Mar; 44(5):1979-88. PubMed ID: 26847092 [TBL] [Abstract][Full Text] [Related]
39. An important role for RNase R in mRNA decay. Cheng ZF; Deutscher MP Mol Cell; 2005 Jan; 17(2):313-8. PubMed ID: 15664199 [TBL] [Abstract][Full Text] [Related]
40. The non-RNase H domain of Saccharomyces cerevisiae RNase H1 binds double-stranded RNA: magnesium modulates the switch between double-stranded RNA binding and RNase H activity. Cerritelli SM; Crouch RJ RNA; 1995 May; 1(3):246-59. PubMed ID: 7489497 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]