These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. ProALIGN: Directly Learning Alignments for Protein Structure Prediction via Exploiting Context-Specific Alignment Motifs. Kong L; Ju F; Zheng WM; Zhu J; Sun S; Xu J; Bu D J Comput Biol; 2022 Feb; 29(2):92-105. PubMed ID: 35073170 [TBL] [Abstract][Full Text] [Related]
7. Development and large scale benchmark testing of the PROSPECTOR_3 threading algorithm. Skolnick J; Kihara D; Zhang Y Proteins; 2004 Aug; 56(3):502-18. PubMed ID: 15229883 [TBL] [Abstract][Full Text] [Related]
8. Does inclusion of residue-residue contact information boost protein threading? Bhattacharya S; Bhattacharya D Proteins; 2019 Jul; 87(7):596-606. PubMed ID: 30882932 [TBL] [Abstract][Full Text] [Related]
9. The utility of artificially evolved sequences in protein threading and fold recognition. Brylinski M J Theor Biol; 2013 Jul; 328():77-88. PubMed ID: 23542050 [TBL] [Abstract][Full Text] [Related]
10. Effect of using suboptimal alignments in template-based protein structure prediction. Chen H; Kihara D Proteins; 2011 Jan; 79(1):315-34. PubMed ID: 21058297 [TBL] [Abstract][Full Text] [Related]
11. Template-based protein structure prediction in CASP11 and retrospect of I-TASSER in the last decade. Yang J; Zhang W; He B; Walker SE; Zhang H; Govindarajoo B; Virtanen J; Xue Z; Shen HB; Zhang Y Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):233-46. PubMed ID: 26343917 [TBL] [Abstract][Full Text] [Related]
12. Automatic Prediction of Protein 3D Structures by Probabilistic Multi-template Homology Modeling. Meier A; Söding J PLoS Comput Biol; 2015 Oct; 11(10):e1004343. PubMed ID: 26496371 [TBL] [Abstract][Full Text] [Related]
13. Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10. Zhang Y Proteins; 2014 Feb; 82 Suppl 2(0 2):175-87. PubMed ID: 23760925 [TBL] [Abstract][Full Text] [Related]
14. Structure-dependent sequence alignment for remotely related proteins. Yang AS Bioinformatics; 2002 Dec; 18(12):1658-65. PubMed ID: 12490451 [TBL] [Abstract][Full Text] [Related]
15. Protein threading using residue co-variation and deep learning. Zhu J; Wang S; Bu D; Xu J Bioinformatics; 2018 Jul; 34(13):i263-i273. PubMed ID: 29949980 [TBL] [Abstract][Full Text] [Related]
16. Template-based and free modeling by RAPTOR++ in CASP8. Xu J; Peng J; Zhao F Proteins; 2009; 77 Suppl 9(Suppl 9):133-7. PubMed ID: 19722267 [TBL] [Abstract][Full Text] [Related]
17. Incorporating Ab Initio energy into threading approaches for protein structure prediction. Shao M; Wang S; Wang C; Yuan X; Li SC; Zheng W; Bu D BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S54. PubMed ID: 21342587 [TBL] [Abstract][Full Text] [Related]
18. DisCovER: distance- and orientation-based covariational threading for weakly homologous proteins. Bhattacharya S; Roche R; Moussad B; Bhattacharya D Proteins; 2022 Feb; 90(2):579-588. PubMed ID: 34599831 [TBL] [Abstract][Full Text] [Related]
19. Fr-TM-align: a new protein structural alignment method based on fragment alignments and the TM-score. Pandit SB; Skolnick J BMC Bioinformatics; 2008 Dec; 9():531. PubMed ID: 19077267 [TBL] [Abstract][Full Text] [Related]