These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 21465629)

  • 41. Cyclopentane-modified PNA improves the sensitivity of nanoparticle-based scanometric DNA detection.
    Pokorski JK; Nam JM; Vega RA; Mirkin CA; Appella DH
    Chem Commun (Camb); 2005 Apr; (16):2101-3. PubMed ID: 15846413
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cellular delivery of peptide nucleic acid by cell-penetrating peptides.
    Kilk K; Langel U
    Methods Mol Biol; 2005; 298():131-41. PubMed ID: 16044544
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Imaging mRNAs in living mammalian cells.
    Yunger S; Shav-Tal Y
    Methods Mol Biol; 2011; 714():249-63. PubMed ID: 21431746
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Light-up probes: thiazole orange-conjugated peptide nucleic acid for detection of target nucleic acid in homogeneous solution.
    Svanvik N; Westman G; Wang D; Kubista M
    Anal Biochem; 2000 May; 281(1):26-35. PubMed ID: 10847607
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visualizing telomere dynamics in living mammalian cells using PNA probes.
    Molenaar C; Wiesmeijer K; Verwoerd NP; Khazen S; Eils R; Tanke HJ; Dirks RW
    EMBO J; 2003 Dec; 22(24):6631-41. PubMed ID: 14657034
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A simple quenching method for fluorescence background reduction and its application to the direct, quantitative detection of specific mRNA.
    Nolan RL; Cai H; Nolan JP; Goodwin PM
    Anal Chem; 2003 Nov; 75(22):6236-43. PubMed ID: 14616007
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A protocol for PAIR: PNA-assisted identification of RNA binding proteins in living cells.
    Zeng F; Peritz T; Kannanayakal TJ; Kilk K; Eiríksdóttir E; Langel U; Eberwine J
    Nat Protoc; 2006; 1(2):920-7. PubMed ID: 17406325
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual sensing of hairpin and quadruplex DNA structures using multicolored peptide nucleic acid fluorescent probes.
    Koripelly G; Meguellati K; Ladame S
    Bioconjug Chem; 2010 Nov; 21(11):2103-9. PubMed ID: 20923172
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Visualizing mRNAs in fixed and living yeast cells.
    Gallardo F; Chartrand P
    Methods Mol Biol; 2011; 714():203-19. PubMed ID: 21431743
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Telomere length assessment in tissue sections by quantitative FISH: image analysis algorithms.
    O'Sullivan JN; Finley JC; Risques RA; Shen WT; Gollahon KA; Moskovitz AH; Gryaznov S; Harley CB; Rabinovitch PS
    Cytometry A; 2004 Apr; 58(2):120-31. PubMed ID: 15057965
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Visualizing endogenous mRNAs in living yeast using m-TAG, a PCR-based RNA aptamer integration method, and fluorescence microscopy.
    Haim-Vilmovsky L; Gerst JE
    Methods Mol Biol; 2011; 714():237-47. PubMed ID: 21431745
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A practical approach to FRET-based PNA fluorescence in situ hybridization.
    Blanco AM; Artero R
    Methods; 2010 Dec; 52(4):343-51. PubMed ID: 20654719
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single molecule imaging of RNA in situ.
    Batish M; Raj A; Tyagi S
    Methods Mol Biol; 2011; 714():3-13. PubMed ID: 21431731
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Affinity capture and recovery of DNA at femtomolar concentrations with peptide nucleic acid probes.
    Chandler DP; Stults JR; Anderson KK; Cebula S; Schuck BL; Brockman FJ
    Anal Biochem; 2000 Aug; 283(2):241-9. PubMed ID: 10906245
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A PNA-DNA hybridization chip approach for the detection of beta-secretase activity.
    Sano S; Tomizaki KY; Usui K; Mihara H
    Bioorg Med Chem Lett; 2006 Feb; 16(3):503-6. PubMed ID: 16288864
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Advantages of peptide nucleic acid oligonucleotides for sensitive site directed 16S rRNA fluorescence in situ hybridization (FISH) detection of Campylobacter jejuni, Campylobacter coli and Campylobacter lari.
    Lehtola MJ; Loades CJ; Keevil CW
    J Microbiol Methods; 2005 Aug; 62(2):211-9. PubMed ID: 16009278
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A molecular peptide beacon for the ratiometric sensing of nucleic acids.
    Wu J; Zou Y; Li C; Sicking W; Piantanida I; Yi T; Schmuck C
    J Am Chem Soc; 2012 Feb; 134(4):1958-61. PubMed ID: 22242714
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Caspase-Activated Oligonucleotide Probe.
    Yang L; Eberwine JH; Dmochowski IJ
    Bioconjug Chem; 2020 Sep; 31(9):2172-2178. PubMed ID: 32786369
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Combination of peptide nucleic acid beacon and nuclease S1 for clear-cut genotyping of single nucleotide polymorphisms.
    Ye S; Miyajima Y; Ohnishi T; Yamamoto Y; Komiyama M
    Anal Biochem; 2007 Apr; 363(2):300-2. PubMed ID: 17288978
    [No Abstract]   [Full Text] [Related]  

  • 60. Single molecule-sensitive probes for imaging RNA in live cells.
    Santangelo PJ; Lifland AW; Curt P; Sasaki Y; Bassell GJ; Lindquist ME; Crowe JE
    Nat Methods; 2009 May; 6(5):347-9. PubMed ID: 19349979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.