BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21466041)

  • 1. Simultaneous degradation of waste phosphogypsum and liquid manure from industrial pig farm by a mixed community of sulfate-reducing bacteria.
    Rzeczycka M; Miernik A; Markiewicz Z
    Pol J Microbiol; 2010; 59(4):241-7. PubMed ID: 21466041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotransformation of phosphogypsum by bacteria isolated from petroleum-refining wastewaters.
    Wolicka D; Kowalski W; Boszczyk-Maleszak H
    Pol J Microbiol; 2005; 54(2):169-73. PubMed ID: 16209111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of phosphogypsum in media containing different forms of nitrogen.
    Rzeczycka M; Mycielski R; Kowalski W; Gałazka M
    Acta Microbiol Pol; 2001; 50(3-4):281-9. PubMed ID: 11930996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic treatment of landfill leachate by sulfate reduction.
    Henry JG; Prasad D
    Water Sci Technol; 2000; 41(3):239-46. PubMed ID: 11381997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of organic substrates to enhance the sulfate-reducing activity in phosphogypsum.
    Castillo J; Pérez-López R; Sarmiento AM; Nieto JM
    Sci Total Environ; 2012 Nov; 439():106-13. PubMed ID: 23063915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of feeding strategy and COD/sulfate ratio on the removal of sulfate in an AnSBBR with recirculation of the liquid phase.
    Archilha NC; Canto CS; Ratusznei SM; Rodrigues JA; Zaiat M; Foresti E
    J Environ Manage; 2010 Aug; 91(8):1756-65. PubMed ID: 20413213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of the degradation of sulfate rich wastewater using sweetmeat waste (SMW) as nutrient supplement.
    Das BK; Roy S; Dev S; Das D; Bhattacharya J
    J Hazard Mater; 2015 Dec; 300():796-807. PubMed ID: 26322967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of phosphogypsum on distillery decoctions (Preliminary results).
    Wolicka D; Kowalski W
    Pol J Microbiol; 2006; 55(2):147-51. PubMed ID: 17419293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of ethanol on sulfate reduction and methanogenesis].
    Wang Q; Liu B; Yan DD; Li S; Chen ZZ
    Huan Jing Ke Xue; 2009 Mar; 30(3):924-9. PubMed ID: 19432352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioremediation of copper-containing wastewater by sulfate reducing bacteria coupled with iron.
    Bai H; Kang Y; Quan H; Han Y; Sun J; Feng Y
    J Environ Manage; 2013 Nov; 129():350-6. PubMed ID: 23981707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria.
    Wang A; Ren N; Wang X; Lee D
    J Hazard Mater; 2008 Jun; 154(1-3):1060-5. PubMed ID: 18093734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nitrates on biotransformation of phosphogypsum and phenol uptake in cultures of autochthonous sludge microflora from petroleum refining wastewaters.
    Kowalski W; Przytocka-Jusiak M; Błaszczyk M; Hołub W; Wolicka D; Wesołowska I
    Acta Microbiol Pol; 2002; 51(1):47-56. PubMed ID: 12184447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria.
    Rao AG; Ravichandra P; Joseph J; Jetty A; Sarma PN
    J Hazard Mater; 2007 Aug; 147(3):718-25. PubMed ID: 17324510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphogypsum biotransformation by aerobic bacterial flora and isolated Trichoderma asperellum from Tunisian storage piles.
    Jalali J; Magdich S; Jarboui R; Loungou M; Ammar E
    J Hazard Mater; 2016 May; 308():362-73. PubMed ID: 26855183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction.
    Zhao Y; Ren N; Wang A
    Chemosphere; 2008 May; 72(2):233-42. PubMed ID: 18331751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbiome characterization of MFCs used for the treatment of swine manure.
    Vilajeliu-Pons A; Puig S; Pous N; Salcedo-Dávila I; Bañeras L; Balaguer MD; Colprim J
    J Hazard Mater; 2015 May; 288():60-8. PubMed ID: 25698567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the sulfate-reducing bacterial population associated with stored swine slurry.
    Cook KL; Whitehead TR; Spence C; Cotta MA
    Anaerobe; 2008 Jun; 14(3):172-80. PubMed ID: 18457964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AnSBBR applied to organic matter and sulfate removal: interaction effect between feed strategy and COD/sulfate ratio.
    Friedl GF; Mockaitis G; Rodrigues JA; Ratusznei SM; Zaiat M; Foresti E
    Appl Biochem Biotechnol; 2009 Oct; 159(1):95-109. PubMed ID: 19277484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of phosphogypsum in wastewaters from the dairy industry.
    Wolicka D
    Bioresour Technol; 2008 Sep; 99(13):5666-72. PubMed ID: 18061442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cattail biomass on sulfate removal and carbon sources competition in subsurface-flow constructed wetlands treating secondary effluent.
    Chen Y; Wen Y; Zhou J; Tang Z; Li L; Zhou Q; Vymazal J
    Water Res; 2014 Aug; 59():1-10. PubMed ID: 24768761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.