These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 21466041)
1. Simultaneous degradation of waste phosphogypsum and liquid manure from industrial pig farm by a mixed community of sulfate-reducing bacteria. Rzeczycka M; Miernik A; Markiewicz Z Pol J Microbiol; 2010; 59(4):241-7. PubMed ID: 21466041 [TBL] [Abstract][Full Text] [Related]
2. Biotransformation of phosphogypsum by bacteria isolated from petroleum-refining wastewaters. Wolicka D; Kowalski W; Boszczyk-Maleszak H Pol J Microbiol; 2005; 54(2):169-73. PubMed ID: 16209111 [TBL] [Abstract][Full Text] [Related]
3. Biotransformation of phosphogypsum in media containing different forms of nitrogen. Rzeczycka M; Mycielski R; Kowalski W; Gałazka M Acta Microbiol Pol; 2001; 50(3-4):281-9. PubMed ID: 11930996 [TBL] [Abstract][Full Text] [Related]
4. Anaerobic treatment of landfill leachate by sulfate reduction. Henry JG; Prasad D Water Sci Technol; 2000; 41(3):239-46. PubMed ID: 11381997 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of organic substrates to enhance the sulfate-reducing activity in phosphogypsum. Castillo J; Pérez-López R; Sarmiento AM; Nieto JM Sci Total Environ; 2012 Nov; 439():106-13. PubMed ID: 23063915 [TBL] [Abstract][Full Text] [Related]
6. Effect of feeding strategy and COD/sulfate ratio on the removal of sulfate in an AnSBBR with recirculation of the liquid phase. Archilha NC; Canto CS; Ratusznei SM; Rodrigues JA; Zaiat M; Foresti E J Environ Manage; 2010 Aug; 91(8):1756-65. PubMed ID: 20413213 [TBL] [Abstract][Full Text] [Related]
7. Improvement of the degradation of sulfate rich wastewater using sweetmeat waste (SMW) as nutrient supplement. Das BK; Roy S; Dev S; Das D; Bhattacharya J J Hazard Mater; 2015 Dec; 300():796-807. PubMed ID: 26322967 [TBL] [Abstract][Full Text] [Related]
8. Biotransformation of phosphogypsum on distillery decoctions (Preliminary results). Wolicka D; Kowalski W Pol J Microbiol; 2006; 55(2):147-51. PubMed ID: 17419293 [TBL] [Abstract][Full Text] [Related]
9. [Effect of ethanol on sulfate reduction and methanogenesis]. Wang Q; Liu B; Yan DD; Li S; Chen ZZ Huan Jing Ke Xue; 2009 Mar; 30(3):924-9. PubMed ID: 19432352 [TBL] [Abstract][Full Text] [Related]
10. Bioremediation of copper-containing wastewater by sulfate reducing bacteria coupled with iron. Bai H; Kang Y; Quan H; Han Y; Sun J; Feng Y J Environ Manage; 2013 Nov; 129():350-6. PubMed ID: 23981707 [TBL] [Abstract][Full Text] [Related]
11. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria. Wang A; Ren N; Wang X; Lee D J Hazard Mater; 2008 Jun; 154(1-3):1060-5. PubMed ID: 18093734 [TBL] [Abstract][Full Text] [Related]
12. Effect of nitrates on biotransformation of phosphogypsum and phenol uptake in cultures of autochthonous sludge microflora from petroleum refining wastewaters. Kowalski W; Przytocka-Jusiak M; Błaszczyk M; Hołub W; Wolicka D; Wesołowska I Acta Microbiol Pol; 2002; 51(1):47-56. PubMed ID: 12184447 [TBL] [Abstract][Full Text] [Related]
13. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria. Rao AG; Ravichandra P; Joseph J; Jetty A; Sarma PN J Hazard Mater; 2007 Aug; 147(3):718-25. PubMed ID: 17324510 [TBL] [Abstract][Full Text] [Related]
14. Phosphogypsum biotransformation by aerobic bacterial flora and isolated Trichoderma asperellum from Tunisian storage piles. Jalali J; Magdich S; Jarboui R; Loungou M; Ammar E J Hazard Mater; 2016 May; 308():362-73. PubMed ID: 26855183 [TBL] [Abstract][Full Text] [Related]
15. Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction. Zhao Y; Ren N; Wang A Chemosphere; 2008 May; 72(2):233-42. PubMed ID: 18331751 [TBL] [Abstract][Full Text] [Related]
16. Microbiome characterization of MFCs used for the treatment of swine manure. Vilajeliu-Pons A; Puig S; Pous N; Salcedo-Dávila I; Bañeras L; Balaguer MD; Colprim J J Hazard Mater; 2015 May; 288():60-8. PubMed ID: 25698567 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the sulfate-reducing bacterial population associated with stored swine slurry. Cook KL; Whitehead TR; Spence C; Cotta MA Anaerobe; 2008 Jun; 14(3):172-80. PubMed ID: 18457964 [TBL] [Abstract][Full Text] [Related]
18. AnSBBR applied to organic matter and sulfate removal: interaction effect between feed strategy and COD/sulfate ratio. Friedl GF; Mockaitis G; Rodrigues JA; Ratusznei SM; Zaiat M; Foresti E Appl Biochem Biotechnol; 2009 Oct; 159(1):95-109. PubMed ID: 19277484 [TBL] [Abstract][Full Text] [Related]
19. Biotransformation of phosphogypsum in wastewaters from the dairy industry. Wolicka D Bioresour Technol; 2008 Sep; 99(13):5666-72. PubMed ID: 18061442 [TBL] [Abstract][Full Text] [Related]
20. Effects of cattail biomass on sulfate removal and carbon sources competition in subsurface-flow constructed wetlands treating secondary effluent. Chen Y; Wen Y; Zhou J; Tang Z; Li L; Zhou Q; Vymazal J Water Res; 2014 Aug; 59():1-10. PubMed ID: 24768761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]