BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21466170)

  • 1. Effect of carrier fluid viscosity on retention time and resolution in gravitational field-flow fractionation.
    Lee S; Kang DY; Park M; Williams PS
    Anal Chem; 2011 May; 83(9):3343-51. PubMed ID: 21466170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retention behavior of microparticles in gravitational field-flow fractionation (GrFFF): effect of ionic strength.
    Woo IS; Jung EC; Lee S
    Talanta; 2015 Jan; 132():945-53. PubMed ID: 25476401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of comprehensive function of factors on retention behavior of microparticles in gravitational field-flow fractionation.
    Guo S; Qiu BL; Zhu CQ; Yang YG; Wu D; Liang QH; Han NY
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Sep; 1031():1-7. PubMed ID: 27447927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different elution modes and field programming in gravitational field-flow fractionation. Effect of channel angle.
    Park MR; Kang DY; Chmelik J; Kang N; Kim JS; Lee S
    J Chromatogr A; 2008 Oct; 1209(1-2):206-11. PubMed ID: 18805537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different elution modes and field programming in gravitational field-flow fractionation: field programming using density and viscosity gradients.
    Plocková J; Chmelík J
    J Chromatogr A; 2006 Jun; 1118(2):253-60. PubMed ID: 16696985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of carrier liquid and flow rate on the separation in gravitational field-flow fractionation].
    Guo S; Zhu C; Gao-Yang Y; Qiu B; Wu D; Liang Q; He J; Han N
    Se Pu; 2016 Feb; 34(2):146-51. PubMed ID: 27382718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different elution modes and field programming in gravitational field-flow fractionation. 2. Experimental verification of the range of conditions for flow-rate and carrier liquid density programming.
    Plocková J; Chmelík J
    J Chromatogr A; 2000 Feb; 868(2):217-27. PubMed ID: 10701672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation.
    Wang XB; Vykoukal J; Becker FF; Gascoyne PR
    Biophys J; 1998 May; 74(5):2689-701. PubMed ID: 9591693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of operating parameters on the retention of chromatographic particles by thermal field-flow fractionation.
    Regazzetti A; Hoyos M; Martin M
    Anal Chem; 2004 Oct; 76(19):5787-98. PubMed ID: 15456299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field-flow fractionation of magnetic particles in a cyclic magnetic field.
    Bi Y; Pan X; Chen L; Wan QH
    J Chromatogr A; 2011 Jun; 1218(25):3908-14. PubMed ID: 21592484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-capacity channel designed for particle separation with controlled electric fields and evaluation of involved forces.
    Masudo T; Okada T
    J Chromatogr A; 2006 Feb; 1106(1-2):196-204. PubMed ID: 16443462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different elution modes and field programming in gravitational field-flow fractionation. IV. Field programming achieved with channels of non-constant cross-sections.
    Plocková J; Matulík F; Chmelík J
    J Chromatogr A; 2002 Apr; 955(1):95-103. PubMed ID: 12061568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gravitational field flow fractionation: Enhancing the resolution power by using an acoustic force field.
    Hwang JY; Youn S; Yang IH
    Anal Chim Acta; 2019 Jan; 1047():238-247. PubMed ID: 30567656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid gravitational field-flow fractionation using immunofunctionalized walls for integrated bioanalytical devices.
    Roda B; Casolari S; Reschiglian P; Mirasoli M; Simoni P; Roda A
    Anal Bioanal Chem; 2009 Jun; 394(4):953-61. PubMed ID: 19290513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous split-flow thin cell and gravitational field-flow fractionation of wheat starch particles.
    Contado C; Reschiglian P; Faccini S; Zattoni A; Dondi F
    J Chromatogr A; 2000 Feb; 871(1-2):449-60. PubMed ID: 10735325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic programming in step-split-flow lateral-transport thin fractionation.
    Ratier C; Hoyos M
    Anal Chem; 2010 Feb; 82(4):1318-25. PubMed ID: 20099837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump.
    Plocková J; Chmelík J
    J Chromatogr A; 2001 May; 918(2):361-70. PubMed ID: 11407583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmolarity effects on red blood cell elution in sedimentation field-flow fractionation.
    Assidjo NE; Chianéa T; Clarot I; Dreyfuss MF; Cardot PJ
    J Chromatogr Sci; 1999 Jul; 37(7):229-36. PubMed ID: 10422264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous dielectrophoretic size-based particle sorting.
    Kralj JG; Lis MT; Schmidt MA; Jensen KF
    Anal Chem; 2006 Jul; 78(14):5019-25. PubMed ID: 16841925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow Field-Flow Fractionation with a Thickness-Tapered Channel.
    Shin SY; Seo JW; Kim JY; Williams PS; Moon MH
    Anal Chem; 2022 Oct; 94(41):14460-14466. PubMed ID: 36194886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.