These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 21466226)

  • 41. Exploring protein interfaces with a general photochemical reagent.
    Gómez GE; Cauerhff A; Craig PO; Goldbaum FA; Delfino JM
    Protein Sci; 2006 Apr; 15(4):744-52. PubMed ID: 16600965
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stereospecific synthesis of a carbene-generating angiotensin II analogue for comparative photoaffinity labeling: improved incorporation and absence of methionine selectivity.
    Fillion D; Deraët M; Holleran BJ; Escher E
    J Med Chem; 2006 Apr; 49(7):2200-9. PubMed ID: 16570916
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A fluorescent radioiodinated oligonucleotidic photoaffinity probe for protein labeling: synthesis and photolabeling of thrombin.
    Berens C; Courtoy PJ; Sonveaux E
    Bioconjug Chem; 1999; 10(1):56-61. PubMed ID: 9893964
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Diazotrifluoropropionamido-containing prenylcysteines: syntheses and applications for studying isoprenoid-protein interactions.
    Kale TA; Distefano MD
    Org Lett; 2003 Mar; 5(5):609-12. PubMed ID: 12605471
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of photoaffinity probes for gamma-secretase equipped with a nitrobenzenesulfonamide-type cleavable linker.
    Yokoshima S; Abe Y; Watanabe N; Kita Y; Kan T; Iwatsubo T; Tomita T; Fukuyama T
    Bioorg Med Chem Lett; 2009 Dec; 19(24):6869-71. PubMed ID: 19892551
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lifetimes and reactivities of some 1,2-didehydroazepines commonly used in photoaffinity labeling experiments in aqueous solutions.
    Rizk MS; Shi X; Platz MS
    Biochemistry; 2006 Jan; 45(2):543-51. PubMed ID: 16401083
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photoaffinity labeling and bioorthogonal ligation: Two critical tools for designing "Fish Hooks" to scout for target proteins.
    Karaj E; Sindi SH; Viranga Tillekeratne LM
    Bioorg Med Chem; 2022 May; 62():116721. PubMed ID: 35358862
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isotope-labeled photoaffinity reagents and mass spectrometry to identify protein-ligand interactions.
    Sinz A
    Angew Chem Int Ed Engl; 2007; 46(5):660-2. PubMed ID: 17167803
    [No Abstract]   [Full Text] [Related]  

  • 49. Synthesis and application of photoaffinity probe containing an intact isoprenoid chain.
    Li L; Tang W; Zhao ZK
    Bioorg Med Chem Lett; 2009 Aug; 19(16):4824-6. PubMed ID: 19560352
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photoaffinity labeling approaches to elucidate lipid-protein interactions.
    Yu W; Baskin JM
    Curr Opin Chem Biol; 2022 Aug; 69():102173. PubMed ID: 35724595
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Affinity-based labeling of cytohesins with a bifunctional SecinH3 photoaffinity probe.
    Bi X; Schmitz A; Hayallah AM; Song JN; Famulok M
    Angew Chem Int Ed Engl; 2008; 47(49):9565-8. PubMed ID: 18972479
    [No Abstract]   [Full Text] [Related]  

  • 52. Immobilization of natural products on glass slides by using a photoaffinity reaction and the detection of protein-small-molecule interactions.
    Kanoh N; Kumashiro S; Simizu S; Kondoh Y; Hatakeyama S; Tashiro H; Osada H
    Angew Chem Int Ed Engl; 2003 Nov; 42(45):5584-7. PubMed ID: 14639721
    [No Abstract]   [Full Text] [Related]  

  • 53. The effect of structural differences in the reducing terminus of sugars on the binding affinity of carbohydrates and proteins analyzed using photoaffinity labeling.
    Ohtsuka I; Sadakane Y; Higuchi M; Hada N; Hada J; Kakiuchi N; Sakushima A
    Bioorg Med Chem; 2011 Jan; 19(2):894-9. PubMed ID: 21211984
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient synthesis of 3-trifluoromethylphenyldiazirinyl oleic acid derivatives and their biological activity for protein kinase C.
    Hashimoto M; Nabeta K; Murakami K
    Bioorg Med Chem Lett; 2003 May; 13(9):1531-3. PubMed ID: 12699748
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design, synthesis, and biological evaluation of potent discodermolide fluorescent and photoaffinity molecular probes.
    Smith AB; Rucker PV; Brouard I; Freeze BS; Xia S; Horwitz SB
    Org Lett; 2005 Nov; 7(23):5199-202. PubMed ID: 16268537
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis of photoaffinity label analogues of alpha-tocopherol.
    Lei H; Marks V; Pasquale T; Atkinson JK
    Bioorg Med Chem Lett; 1998 Dec; 8(24):3453-8. PubMed ID: 9934451
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A model of photoprobe docking with beta1,4-galactosyltransferase identifies a possible carboxylate involved in glycosylation steps.
    Hatanaka Y; Ishiguro M; Hashimoto M; Gastinel LN; Nakagomi K
    Bioorg Med Chem Lett; 2001 Feb; 11(3):411-3. PubMed ID: 11212123
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design and synthesis of biotin-tagged photoaffinity probes of jasmonates.
    Gu M; Yan J; Bai Z; Chen YT; Lu W; Tang J; Duan L; Xie D; Nan FJ
    Bioorg Med Chem; 2010 May; 18(9):3012-9. PubMed ID: 20395151
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of a novel peptidic photoaffinity probe for the PTP-1B enzyme.
    Thérien M; Skorey K; Zamboni R; Li CS; Lau CK; LeRiche T; Linh Truong V; Waddleton D; Ramachandran C
    Bioorg Med Chem Lett; 2004 May; 14(9):2319-22. PubMed ID: 15081032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of bifunctional photoactivatable benzophenone probes and their application to glycoside substrates.
    Qvit N; Monderer-Rothkoff G; Ido A; Shalev DE; Amster-Choder O; Gilon C
    Biopolymers; 2008; 90(4):526-36. PubMed ID: 18459171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.