These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 21466226)

  • 81. Identification of a UDP-glucose-binding site of human UDP-glucose dehydrogenase by photoaffinity labeling and cassette mutagenesis.
    Huh JW; Lee HJ; Choi MM; Yang SJ; Yoon SY; Kim DW; Kim SY; Choi SY; Cho SW
    Bioconjug Chem; 2005; 16(3):710-6. PubMed ID: 15898741
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Molecular approximation between residue 10 of secretin and its receptor demonstrated by photoaffinity labeling.
    Dong M; Miller LJ
    Ann N Y Acad Sci; 2006 Jul; 1070():243-7. PubMed ID: 16888174
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Covalent modification of matrix metalloproteinases by a photoaffinity probe: influence of nucleophilicity and flexibility of the residue in position 241.
    Dabert-Gay AS; Czarny B; Lajeunesse E; Thai R; Nagase H; Dive V
    Bioconjug Chem; 2009 Feb; 20(2):367-75. PubMed ID: 19138112
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Evaluation of 3-azidiamantane as photoaffinity probe of cytochrome P450.
    Hodek P; Smrcek S
    Gen Physiol Biophys; 1999 Jun; 18(2):181-98. PubMed ID: 10517292
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Stereoselective synthesis of (E)- and (Z)-beta-bromostyrene containing trifluoromethyldiazirine for photoaffinity labeling.
    Hashimoto M; Komano T; Nabeta K; Hatanaka Y
    Chem Pharm Bull (Tokyo); 2005 Jan; 53(1):140-2. PubMed ID: 15635252
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Iodonitrene in Action: Direct Transformation of Amino Acids into Terminal Diazirines and
    Glachet T; Marzag H; Saraiva Rosa N; Colell JFP; Zhang G; Warren WS; Franck X; Theis T; Reboul V
    J Am Chem Soc; 2019 Aug; 141(34):13689-13696. PubMed ID: 31373802
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Effective and transient mapping of protein-protein interactions: Application of novel releasable photoaffinity linkers.
    Wang J; Ma Y; Li J; Zhang Q; Pan X; Lu W; Zhang J
    Drug Dev Res; 2022 Apr; 83(2):368-378. PubMed ID: 34424555
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Synthesis, X-ray Structure Determination, and Comprehensive Photochemical Characterization of (Trifluoromethyl)diazirine-Containing TRPML1 Ligands.
    Schwickert K; Andrzejewski M; Grabowsky S; Schirmeister T
    J Org Chem; 2021 May; 86(9):6169-6183. PubMed ID: 33835801
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Low-temperature photoaffinity labeling of rhodopsin and intermediates along transduction path.
    Souto ML; Borhan B; Nakanishi K
    Methods Enzymol; 2000; 316():425-35. PubMed ID: 10800692
    [No Abstract]   [Full Text] [Related]  

  • 90. Diazirine based photoaffinity labeling.
    Dubinsky L; Krom BP; Meijler MM
    Bioorg Med Chem; 2012 Jan; 20(2):554-70. PubMed ID: 21778062
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Recent advances in target characterization and identification by photoaffinity probes.
    Sumranjit J; Chung SJ
    Molecules; 2013 Aug; 18(9):10425-51. PubMed ID: 23994969
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Photoaffinity labeling in activity-based protein profiling.
    Geurink PP; Prely LM; van der Marel GA; Bischoff R; Overkleeft HS
    Top Curr Chem; 2012; 324():85-113. PubMed ID: 22028098
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Photoaffinity labeling in target- and binding-site identification.
    Smith E; Collins I
    Future Med Chem; 2015; 7(2):159-83. PubMed ID: 25686004
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Detection of cell-cell interactions via photocatalytic cell tagging.
    Oslund RC; Reyes-Robles T; White CH; Tomlinson JH; Crotty KA; Bowman EP; Chang D; Peterson VM; Li L; Frutos S; Vila-Perelló M; Vlerick D; Cromie K; Perlman DH; Ingale S; Hara SDO; Roberts LR; Piizzi G; Hett EC; Hazuda DJ; Fadeyi OO
    Nat Chem Biol; 2022 Aug; 18(8):850-858. PubMed ID: 35654846
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Probing the Mechanism of Photoaffinity Labeling by Dialkyldiazirines through Bioorthogonal Capture of Diazoalkanes.
    O'Brien JGK; Jemas A; Asare-Okai PN; Am Ende CW; Fox JM
    Org Lett; 2020 Dec; 22(24):9415-9420. PubMed ID: 33259213
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Design, Synthesis, and Evaluation of a Diazirine Photoaffinity Probe for Ligand-Based Receptor Capture Targeting G Protein-Coupled Receptors.
    Müskens FM; Ward RJ; Herkt D; van de Langemheen H; Tobin AB; Liskamp RMJ; Milligan G
    Mol Pharmacol; 2019 Feb; 95(2):196-209. PubMed ID: 30514721
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Global profiling of lysine reactivity and ligandability in the human proteome.
    Hacker SM; Backus KM; Lazear MR; Forli S; Correia BE; Cravatt BF
    Nat Chem; 2017 Dec; 9(12):1181-1190. PubMed ID: 29168484
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Oximes and Hydrazones in Bioconjugation: Mechanism and Catalysis.
    Kölmel DK; Kool ET
    Chem Rev; 2017 Aug; 117(15):10358-10376. PubMed ID: 28640998
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Biotin-transfer from a trifunctional crosslinker for identification of cell surface receptors of soluble protein ligands.
    Tremblay TL; Hill JJ
    Sci Rep; 2017 Apr; 7():46574. PubMed ID: 28422167
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Direct identification of ligand-receptor interactions on living cells and tissues.
    Frei AP; Jeon OY; Kilcher S; Moest H; Henning LM; Jost C; Plückthun A; Mercer J; Aebersold R; Carreira EM; Wollscheid B
    Nat Biotechnol; 2012 Oct; 30(10):997-1001. PubMed ID: 22983091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.