These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
625 related articles for article (PubMed ID: 21466918)
1. Measurement of Cu and Zn adsorption onto surficial sediment components: new evidence for less importance of clay minerals. Wang X; Li Y J Hazard Mater; 2011 May; 189(3):719-23. PubMed ID: 21466918 [TBL] [Abstract][Full Text] [Related]
2. A multi-component statistic analysis for the influence of sediment/soil composition on the sorption of a nonionic surfactant (Triton X-100) onto natural sediments/soils. Zhu L; Yang K; Lou B; Yuan B Water Res; 2003 Nov; 37(19):4792-800. PubMed ID: 14568066 [TBL] [Abstract][Full Text] [Related]
3. New evidence for the importance of Mn oxides contributed to nitrobenzene adsorption onto the surficial sediments in Songhua River, China. Wang X; Li Y; Wang Y; Wang T; Gao Q; Du X J Hazard Mater; 2009 Dec; 172(2-3):755-62. PubMed ID: 19683865 [TBL] [Abstract][Full Text] [Related]
4. Sorption of pentachlorophenol on surficial sediments: the roles of metal oxides and organic materials with co-existed copper present. Wang X; Li Y; Dong D Chemosphere; 2008 Aug; 73(1):1-6. PubMed ID: 18649921 [TBL] [Abstract][Full Text] [Related]
5. Clay-mineral suites, sources, and inferred dispersal routes: Southern California continental shelf. Hein JR; Dowling JS; Schuetze A; Lee HJ Mar Environ Res; 2003; 56(1-2):79-102. PubMed ID: 12648951 [TBL] [Abstract][Full Text] [Related]
6. Spatial distribution of heavy metals in sediments from the Gulf of Paria, Trinidad. Norville W Rev Biol Trop; 2005 May; 53 Suppl 1():33-40. PubMed ID: 17465142 [TBL] [Abstract][Full Text] [Related]
7. Cu and Zn adsorption onto non-residual and residual components in the natural surface coatings samples (NSCSs) in the Songhua River, China. Li Y; Wang X; Guo S; Dong D Environ Pollut; 2006 Sep; 143(2):221-7. PubMed ID: 16457916 [TBL] [Abstract][Full Text] [Related]
8. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium. Liu D; Dong H; Bishop ME; Zhang J; Wang H; Xie S; Wang S; Huang L; Eberl DD Geobiology; 2012 Mar; 10(2):150-62. PubMed ID: 22074236 [TBL] [Abstract][Full Text] [Related]
9. Effect of organic carbon and mineral surface on the pyrene sorption and distribution in Yangtze River sediments. Zhang J; Séquaris JM; Narres HD; Vereecken H; Klumpp E Chemosphere; 2010 Sep; 80(11):1321-7. PubMed ID: 20619874 [TBL] [Abstract][Full Text] [Related]
10. The desorption of antimony(V) from sediments, hydrous oxides, and clay minerals by carbonate, phosphate, sulfate, nitrate, and chloride. Biver M; Krachler M; Shotyk W J Environ Qual; 2011; 40(4):1143-52. PubMed ID: 21712584 [TBL] [Abstract][Full Text] [Related]
11. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments. Butler BA Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291 [TBL] [Abstract][Full Text] [Related]
12. Effect of imposed anaerobic conditions on metals release from acid-mine drainage contaminated streambed sediments. Butler BA Water Res; 2011 Jan; 45(1):328-36. PubMed ID: 20709348 [TBL] [Abstract][Full Text] [Related]
13. Characterizing the capacity of hyporheic sediments to attenuate groundwater nitrate loads by adsorption. Meghdadi A Water Res; 2018 Sep; 140():364-376. PubMed ID: 29751318 [TBL] [Abstract][Full Text] [Related]
14. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing. Chaturvedi PK; Seth CS; Misra V J Hazard Mater; 2007 Aug; 147(3):698-705. PubMed ID: 17303325 [TBL] [Abstract][Full Text] [Related]
15. Sense or no-sense of the sum parameter for water soluble "adsorbable organic halogens" (AOX) and "absorbed organic halogens" (AOX-S18) for the assessment of organohalogens in sludges and sediments. Müller G Chemosphere; 2003 Jul; 52(2):371-9. PubMed ID: 12738259 [TBL] [Abstract][Full Text] [Related]
16. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661 [TBL] [Abstract][Full Text] [Related]
17. Photodegradation of decabromodiphenyl ether adsorbed onto clay minerals, metal oxides, and sediment. Ahn MY; Filley TR; Jafvert CT; Nies L; Hua I; Bezares-Cruz J Environ Sci Technol; 2006 Jan; 40(1):215-20. PubMed ID: 16433354 [TBL] [Abstract][Full Text] [Related]
18. Relationship between sediment clay minerals and total mercury. Kongchum M; Hudnall WH; DeLaune RD J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(5):534-9. PubMed ID: 21469014 [TBL] [Abstract][Full Text] [Related]
19. Desorption of arsenic from clay and humic acid-coated clay by dissolved phosphate and silicate. Sharma P; Kappler A J Contam Hydrol; 2011 Nov; 126(3-4):216-25. PubMed ID: 22115087 [TBL] [Abstract][Full Text] [Related]
20. Effects of clay minerals, hydroxides, and timing of dissolved organic matter addition on the competitive sorption of copper, nickel, and zinc: A column experiment. Refaey Y; Jansen B; Parsons JR; de Voogt P; Bagnis S; Markus A; El-Shater AH; El-Haddad AA; Kalbitz K J Environ Manage; 2017 Feb; 187():273-285. PubMed ID: 27914349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]