These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 2146698)

  • 1. Optimization, constraint, and history in the evolution of eyes.
    Goldsmith TH
    Q Rev Biol; 1990 Sep; 65(3):281-322. PubMed ID: 2146698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual Pigments, Ocular Filters and the Evolution of Snake Vision.
    Simões BF; Sampaio FL; Douglas RH; Kodandaramaiah U; Casewell NR; Harrison RA; Hart NS; Partridge JC; Hunt DM; Gower DJ
    Mol Biol Evol; 2016 Oct; 33(10):2483-95. PubMed ID: 27535583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel evolution of opsin visual pigments in hawkmoths by tuning of spectral sensitivities during transition from a nocturnal to a diurnal ecology.
    Akiyama T; Uchiyama H; Yajima S; Arikawa K; Terai Y
    J Exp Biol; 2022 Dec; 225(23):. PubMed ID: 36408938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultraviolet receptors and color vision: evolutionary implications and a dissonance of paradigms.
    Goldsmith TH
    Vision Res; 1994 Jun; 34(11):1479-87. PubMed ID: 8023460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution.
    Emerling CA; Huynh HT; Nguyen MA; Meredith RW; Springer MS
    Proc Biol Sci; 2015 Nov; 282(1819):. PubMed ID: 26582021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments.
    Nathans J; Thomas D; Hogness DS
    Science; 1986 Apr; 232(4747):193-202. PubMed ID: 2937147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rod and cone opsin families differ in spectral tuning domains but not signal transducing domains as judged by saturated evolutionary trace analysis.
    Carleton KL; Spady TC; Cote RH
    J Mol Evol; 2005 Jul; 61(1):75-89. PubMed ID: 15988624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake.
    Schott RK; Müller J; Yang CG; Bhattacharyya N; Chan N; Xu M; Morrow JM; Ghenu AH; Loew ER; Tropepe V; Chang BS
    Proc Natl Acad Sci U S A; 2016 Jan; 113(2):356-61. PubMed ID: 26715746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Daily activity patterns influence retinal morphology, signatures of selection, and spectral tuning of opsin genes in colubrid snakes.
    Hauzman E; Bonci DMO; Suárez-Villota EY; Neitz M; Ventura DF
    BMC Evol Biol; 2017 Dec; 17(1):249. PubMed ID: 29228925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The molecular basis of dichromatic color vision in males with multiple red and green visual pigment genes.
    Jagla WM; Jägle H; Hayashi T; Sharpe LT; Deeb SS
    Hum Mol Genet; 2002 Jan; 11(1):23-32. PubMed ID: 11772996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive evolution of color vision as seen through the eyes of butterflies.
    Frentiu FD; Bernard GD; Cuevas CI; Sison-Mangus MP; Prudic KL; Briscoe AD
    Proc Natl Acad Sci U S A; 2007 May; 104 Suppl 1(Suppl 1):8634-40. PubMed ID: 17494749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive evolution of color vision genes in higher primates.
    Shyue SK; Hewett-Emmett D; Sperling HG; Hunt DM; Bowmaker JK; Mollon JD; Li WH
    Science; 1995 Sep; 269(5228):1265-7. PubMed ID: 7652574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular evolution of vertebrate visual pigments.
    Yokoyama S
    Prog Retin Eye Res; 2000 Jul; 19(4):385-419. PubMed ID: 10785616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, chemical synthesis, and expression of genes for the three human color vision pigments.
    Oprian DD; Asenjo AB; Lee N; Pelletier SL
    Biochemistry; 1991 Dec; 30(48):11367-72. PubMed ID: 1742276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary analysis of rhodopsin and cone pigments: connecting the three-dimensional structure with spectral tuning and signal transfer.
    Teller DC; Stenkamp RE; Palczewski K
    FEBS Lett; 2003 Nov; 555(1):151-9. PubMed ID: 14630336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Archelosaurian Color Vision, Parietal Eye Loss, and the Crocodylian Nocturnal Bottleneck.
    Emerling CA
    Mol Biol Evol; 2017 Mar; 34(3):666-676. PubMed ID: 27940498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual pigments of the platypus: a novel route to mammalian colour vision.
    Davies WL; Carvalho LS; Cowing JA; Beazley LD; Hunt DM; Arrese CA
    Curr Biol; 2007 Mar; 17(5):R161-3. PubMed ID: 17339011
    [No Abstract]   [Full Text] [Related]  

  • 19. Signatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate.
    Perry GH; Martin RD; Verrelli BC
    Mol Biol Evol; 2007 Sep; 24(9):1963-70. PubMed ID: 17575304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Color discrimination in the red range with only one long-wavelength sensitive opsin.
    Zaccardi G; Kelber A; Sison-Mangus MP; Briscoe AD
    J Exp Biol; 2006 May; 209(Pt 10):1944-55. PubMed ID: 16651559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.