These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21467775)

  • 21. Guidance on the use of the benchmark dose approach in risk assessment.
    ; More SJ; Bampidis V; Benford D; Bragard C; Halldorsson TI; Hernández-Jerez AF; Bennekou SH; Koutsoumanis K; Lambré C; Machera K; Mennes W; Mullins E; Nielsen SS; Schrenk D; Turck D; Younes M; Aerts M; Edler L; Sand S; Wright M; Binaglia M; Bottex B; Abrahantes JC; Schlatter J
    EFSA J; 2022 Oct; 20(10):e07584. PubMed ID: 36304832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Web-Based System for Bayesian Benchmark Dose Estimation.
    Shao K; Shapiro AJ
    Environ Health Perspect; 2018 Jan; 126(1):017002. PubMed ID: 29329100
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Application of the Benchmark Dose Method to the Incidence Data for Various Pathological Findings and Its Validation Analysis].
    Inoue K; Shigeta Y; Umemura T; Nishiura H; Hirose A
    Shokuhin Eiseigaku Zasshi; 2021; 62(2):56-64. PubMed ID: 33883337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Benchmark dose modelling in regulatory ecotoxicology, a potential tool in pest management.
    Jensen SM; Kluxen FM; Ritz C
    Pest Manag Sci; 2022 May; 78(5):1772-1779. PubMed ID: 34908226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Risk Assessment of Isoeugenol in Food Based on Benchmark Dose-Response Modeling.
    Quentin T; Franke H; Lachenmeier DW
    Toxics; 2023 Dec; 11(12):. PubMed ID: 38133392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Benchmark dose-response analyses for multiple endpoints in drug safety evaluation.
    Vieira Silva A; Ringblom J; Moldeus P; Törnqvist E; Öberg M
    Toxicol Appl Pharmacol; 2021 Dec; 433():115732. PubMed ID: 34606779
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of transcriptional benchmark dose values in quantitative cancer and noncancer risk assessment.
    Thomas RS; Clewell HJ; Allen BC; Wesselkamper SC; Wang NC; Lambert JC; Hess-Wilson JK; Zhao QJ; Andersen ME
    Toxicol Sci; 2011 Mar; 120(1):194-205. PubMed ID: 21097997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Background to the ADI/TDI/PTWI.
    Herrman JL; Younes M
    Regul Toxicol Pharmacol; 1999 Oct; 30(2 Pt 2):S109-13. PubMed ID: 10597623
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A signal-to-noise crossover dose as the point of departure for health risk assessment.
    Sand S; Portier CJ; Krewski D
    Environ Health Perspect; 2011 Dec; 119(12):1766-74. PubMed ID: 21813365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of a critical dose level for risk assessment: developments in benchmark dose analysis of continuous endpoints.
    Sand S; von Rosen D; Victorin K; Filipsson AF
    Toxicol Sci; 2006 Mar; 90(1):241-51. PubMed ID: 16322076
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Benchmark dose profiles for joint-action quantal data in quantitative risk assessment.
    Deutsch RC; Piegorsch WW
    Biometrics; 2012 Dec; 68(4):1313-22. PubMed ID: 23278519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Benchmark dose analysis framework for developing wildlife toxicity reference values.
    Mayfield DB; Skall DG
    Environ Toxicol Chem; 2018 May; 37(5):1496-1508. PubMed ID: 29315767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Benchmark dose and the three Rs. Part I. Getting more information from the same number of animals.
    Slob W
    Crit Rev Toxicol; 2014 Aug; 44(7):557-67. PubMed ID: 25000332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of myocardial and testicular end points as a basis for estimating a proposed tolerable daily intake for sodium monofluoroacetate (1080).
    Foronda NM; Fowles J; Smith N; Taylor M; Temple W; Darlington C
    Regul Toxicol Pharmacol; 2007 Feb; 47(1):29-36. PubMed ID: 17030370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the benchmark dose method for dichotomous data: model dependence and model selection.
    Sand S; Filipsson AF; Victorin K
    Regul Toxicol Pharmacol; 2002 Oct; 36(2):184-97. PubMed ID: 12460753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data.
    Shao K; Gift JS
    Risk Anal; 2014 Jan; 34(1):101-20. PubMed ID: 23758102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing dose-response: I: Critical assessment of the benchmark dose concept.
    Murrell JA; Portier CJ; Morris RW
    Risk Anal; 1998 Feb; 18(1):13-26. PubMed ID: 9523441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporal concordance between apical and transcriptional points of departure for chemical risk assessment.
    Thomas RS; Wesselkamper SC; Wang NC; Zhao QJ; Petersen DD; Lambert JC; Cote I; Yang L; Healy E; Black MB; Clewell HJ; Allen BC; Andersen ME
    Toxicol Sci; 2013 Jul; 134(1):180-94. PubMed ID: 23596260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Update: use of the benchmark dose approach in risk assessment.
    ; Hardy A; Benford D; Halldorsson T; Jeger MJ; Knutsen KH; More S; Mortensen A; Naegeli H; Noteborn H; Ockleford C; Ricci A; Rychen G; Silano V; Solecki R; Turck D; Aerts M; Bodin L; Davis A; Edler L; Gundert-Remy U; Sand S; Slob W; Bottex B; Abrahantes JC; Marques DC; Kass G; Schlatter JR
    EFSA J; 2017 Jan; 15(1):e04658. PubMed ID: 32625254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.