These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 21467775)

  • 41. Comparing experimental designs for benchmark dose calculations for continuous endpoints.
    Kuljus K; von Rosen D; Sand S; Victorin K
    Risk Anal; 2006 Aug; 26(4):1031-43. PubMed ID: 16948695
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Meta-analysis of transcriptomic datasets using benchmark dose modeling shows value in supporting radiation risk assessment.
    Chauhan V; Adam N; Kuo B; Williams A; Yauk CL; Wilkins R; Stainforth R
    Int J Radiat Biol; 2021; 97(1):31-49. PubMed ID: 32687419
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deriving a data-based interspecies assessment factor using the NOAEL and the benchmark dose approach.
    Bokkers BG; Slob W
    Crit Rev Toxicol; 2007 Jun; 37(5):355-73. PubMed ID: 17612951
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Current modeling practice may lead to falsely high benchmark dose estimates.
    Ringblom J; Johanson G; Öberg M
    Regul Toxicol Pharmacol; 2014 Jul; 69(2):171-7. PubMed ID: 24662478
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptional benchmark dose modeling: Exploring how advances in chemical risk assessment may be applied to the radiation field.
    Chauhan V; Kuo B; McNamee JP; Wilkins RC; Yauk CL
    Environ Mol Mutagen; 2016 Oct; 57(8):589-604. PubMed ID: 27601323
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative Interpretation of Genetic Toxicity Dose-Response Data for Risk Assessment and Regulatory Decision-Making: Current Status and Emerging Priorities.
    White PA; Long AS; Johnson GE
    Environ Mol Mutagen; 2020 Jan; 61(1):66-83. PubMed ID: 31794061
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Non-cancer risk assessment for nickel compounds: issues associated with dose-response modeling of inhalation and oral exposures.
    Haber LT; Allen BC; Kimmel CA
    Toxicol Sci; 1998 Jun; 43(2):213-29. PubMed ID: 9710963
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Benchmark dose approaches in chemical health risk assessment in relation to number and distress of laboratory animals.
    Oberg M
    Regul Toxicol Pharmacol; 2010 Dec; 58(3):451-4. PubMed ID: 20800084
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A unified approach to risk assessment for cancer and noncancer endpoints based on benchmark doses and uncertainty/safety factors.
    Gaylor DW; Kodell RL; Chen JJ; Krewski D
    Regul Toxicol Pharmacol; 1999 Apr; 29(2 Pt 1):151-7. PubMed ID: 10341145
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of benchmark dose for occupational epidemiology in lead exposure.
    Lin T; Xiao-Ting L; Ai G; Qiu-Ying L; Tai-Yi J
    Toxicol Mech Methods; 2008; 18(4):363-7. PubMed ID: 20020903
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Benchmark Dose Workshop: criteria for use of a benchmark dose to estimate a reference dose.
    Barnes DG; Daston GP; Evans JS; Jarabek AM; Kavlock RJ; Kimmel CA; Park C; Spitzer HL
    Regul Toxicol Pharmacol; 1995 Apr; 21(2):296-306. PubMed ID: 7644719
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Scientific basis of the OCRA method for risk assessment of biomechanical overload of upper limb, as preferred method in ISO standards on biomechanical risk factors.
    Colombini D; Occhipinti E
    Scand J Work Environ Health; 2018 Jul; 44(4):436-438. PubMed ID: 29961081
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Derivation of the critical effect size/benchmark response for the dose-response analysis of the uptake of radioactive iodine in the human thyroid.
    Weterings PJ; Loftus C; Lewandowski TA
    Toxicol Lett; 2016 Aug; 257():38-43. PubMed ID: 27268963
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Using the benchmark dose (BMD) methodology to determine an appropriate reduction of certain ingredients in food products.
    Bi J
    J Food Sci; 2010; 75(1):R9-16. PubMed ID: 20492196
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Critical issues in benchmark calculations from continuous data.
    Crump K
    Crit Rev Toxicol; 2002 May; 32(3):133-53. PubMed ID: 12071571
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Benchmark dose modeling of transcriptional data: a systematic approach to identify best practices for study designs used in radiation research.
    Stainforth R; Vuong N; Adam N; Kuo B; Wilkins RC; Yauk C; Beheshti A; Chauhan V
    Int J Radiat Biol; 2022; 98(12):1832-1844. PubMed ID: 35939275
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Is the assumption of normality or log-normality for continuous response data critical for benchmark dose estimation?
    Shao K; Gift JS; Setzer RW
    Toxicol Appl Pharmacol; 2013 Nov; 272(3):767-79. PubMed ID: 23954464
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigation of the potential impact of benchmark dose and pharmacokinetic modeling in noncancer risk assessment.
    Clewell HJ; Gentry PR; Gearhart JM
    J Toxicol Environ Health; 1997 Dec; 52(6):475-515. PubMed ID: 9397182
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Benchmark calculations in risk assessment using continuous dose-response information: the influence of variance and the determination of a cut-off value.
    Sand SJ; von Rosen D; Filipsson AF
    Risk Anal; 2003 Oct; 23(5):1059-68. PubMed ID: 12969419
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A computational system for Bayesian benchmark dose estimation of genomic data in BBMD.
    Ji C; Weissmann A; Shao K
    Environ Int; 2022 Mar; 161():107135. PubMed ID: 35151117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.