BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 21468206)

  • 41. Targeted gene replacement at the URA3 locus of the basidiomycetous yeast Pseudozyma antarctica and its transformation using lithium acetate treatment.
    Yarimizu T; Shimoi H; Sameshima-Yamashita Y; Morita T; Koike H; Watanabe T; Kitamoto H
    Yeast; 2017 Dec; 34(12):483-494. PubMed ID: 28810289
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Candida albicans TDH3 gene promotes secretion of internal invertase when expressed in Saccharomyces cerevisiae as a glyceraldehyde-3-phosphate dehydrogenase-invertase fusion protein.
    Delgado ML; Gil ML; Gozalbo D
    Yeast; 2003 Jun; 20(8):713-22. PubMed ID: 12794932
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast.
    Klebe RJ; Harriss JV; Sharp ZD; Douglas MG
    Gene; 1983 Nov; 25(2-3):333-41. PubMed ID: 6363214
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel electroporation procedure for highly efficient transformation of Lipomyces starkeyi.
    Takaku H; Miyajima A; Kazama H; Sato R; Ara S; Matsuzawa T; Yaoi K; Araki H; Shida Y; Ogasawara W; Yamazaki H
    J Microbiol Methods; 2020 Feb; 169():105816. PubMed ID: 31881286
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transformation of lithium-treated yeast cells and the selection of auxotrophic and dominant markers.
    Mount RC; Jordan BE; Hadfield C
    Methods Mol Biol; 1996; 53():139-45. PubMed ID: 8924976
    [No Abstract]   [Full Text] [Related]  

  • 46. Visualized investigation of yeast transformation induced with Li+ and polyethylene glycol.
    Chen P; Liu HH; Cui R; Zhang ZL; Pang DW; Xie ZX; Zheng HZ; Lu ZX; Tong H
    Talanta; 2008 Oct; 77(1):262-8. PubMed ID: 18804630
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Effect of DNA methylation on transformation of Saccharomyces cerevisiae].
    Lebenka AIu
    Genetika; 1988 Nov; 24(11):1935-9. PubMed ID: 3069581
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Difference in the late ergosterol biosynthesis between yeast spheroplasts and intact cells.
    Ferrante T; Viola F; Balliano G; Oliaro-Bosso S
    Acta Biochim Pol; 2016; 63(2):371-5. PubMed ID: 27031513
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens.
    Liu Z; Friesen TL
    Methods Mol Biol; 2012; 835():365-75. PubMed ID: 22183664
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative roles of the cell wall and cell membrane in limiting uptake of xenobiotic molecules by Saccharomyces cerevisiae.
    Aouida M; Tounekti O; Belhadj O; Mir LM
    Antimicrob Agents Chemother; 2003 Jun; 47(6):2012-4. PubMed ID: 12760888
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simplified isolation of chromosomal and plasmid DNA from yeasts.
    Fujimura H; Sakuma Y
    Biotechniques; 1993 Apr; 14(4):538-40. PubMed ID: 8476589
    [No Abstract]   [Full Text] [Related]  

  • 52. Synthesis of Saccharomyces cerevisiae invertase by Schizosaccharomyces pombe.
    Sánchez Y; Moreno S; Rodríguez L
    FEBS Lett; 1988 Jul; 234(1):95-9. PubMed ID: 3292286
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Schizosaccharomyces pombe Git7p, a member of the Saccharomyces cerevisiae Sgtlp family, is required for glucose and cyclic AMP signaling, cell wall integrity, and septation.
    Schadick K; Fourcade HM; Boumenot P; Seitz JJ; Morrell JL; Chang L; Gould KL; Partridge JF; Allshire RC; Kitagawa K; Hieter P; Hoffman CS
    Eukaryot Cell; 2002 Aug; 1(4):558-67. PubMed ID: 12456004
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A simple and efficient procedure for transformation of Schizosaccharomyces pombe.
    Morita T; Takegawa K
    Yeast; 2004 Jun; 21(8):613-7. PubMed ID: 15197727
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genome-wide identification of fungal GPI proteins.
    De Groot PW; Hellingwerf KJ; Klis FM
    Yeast; 2003 Jul; 20(9):781-96. PubMed ID: 12845604
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi.
    Armaleo D; Ye GN; Klein TM; Shark KB; Sanford JC; Johnston SA
    Curr Genet; 1990 Feb; 17(2):97-103. PubMed ID: 2138934
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Physical methods for genetic transformation of fungi and yeast.
    Rivera AL; Magaña-Ortíz D; Gómez-Lim M; Fernández F; Loske AM
    Phys Life Rev; 2014 Jun; 11(2):184-203. PubMed ID: 24507729
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increased transformation levels in intact cells of Saccharomyces cerevisiae aculeacin A-resistant mutants.
    Gallego C; Casas C; Herrero E
    Yeast; 1993 May; 9(5):523-6. PubMed ID: 8322514
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Integrative transformation of Candida albicans, using a cloned Candida ADE2 gene.
    Kurtz MB; Cortelyou MW; Kirsch DR
    Mol Cell Biol; 1986 Jan; 6(1):142-9. PubMed ID: 3023819
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol.
    Wu S; Letchworth GJ
    Biotechniques; 2004 Jan; 36(1):152-4. PubMed ID: 14740498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.