BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21468207)

  • 1. The truncated phage lysin CHAP(k) eliminates Staphylococcus aureus in the nares of mice.
    Fenton M; Casey PG; Hill C; Gahan CG; Ross RP; McAuliffe O; O'Mahony J; Maher F; Coffey A
    Bioeng Bugs; 2010; 1(6):404-7. PubMed ID: 21468207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel bacteriophage Tail-Associated Muralytic Enzyme (TAME) from Phage K and its development into a potent antistaphylococcal protein.
    Paul VD; Rajagopalan SS; Sundarrajan S; George SE; Asrani JY; Pillai R; Chikkamadaiah R; Durgaiah M; Sriram B; Padmanabhan S
    BMC Microbiol; 2011 Oct; 11():226. PubMed ID: 21985151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SP-CHAP, an endolysin with enhanced activity against biofilm pneumococci and nasopharyngeal colonization.
    Alreja AB; Appel AE; Zhu JC; Riley SP; Gonzalez-Juarbe N; Nelson DC
    mBio; 2024 Apr; 15(4):e0006924. PubMed ID: 38470268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization of the CHAP domain of the endolysin from Staphylococcus aureus bacteriophage K.
    Sanz-Gaitero M; Keary R; Garcia-Doval C; Coffey A; van Raaij MJ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Dec; 69(Pt 12):1393-6. PubMed ID: 24316838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phage P68 virion-associated protein 17 displays activity against clinical isolates of Staphylococcus aureus.
    Takác M; Bläsi U
    Antimicrob Agents Chemother; 2005 Jul; 49(7):2934-40. PubMed ID: 15980371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and biochemical characterization reveals LysGH15 as an unprecedented "EF-hand-like" calcium-binding phage lysin.
    Gu J; Feng Y; Feng X; Sun C; Lei L; Ding W; Niu F; Jiao L; Yang M; Li Y; Liu X; Song J; Cui Z; Han D; Du C; Yang Y; Ouyang S; Liu ZJ; Han W
    PLoS Pathog; 2014 May; 10(5):e1004109. PubMed ID: 24831957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and biochemical insights into the bacteriophage PlyGRCS endolysin targeting methicillin-resistant Staphylococcus aureus (MRSA) and serendipitous discovery of its interaction with a cold shock protein C (CspC).
    Krishnappa G; Mandal M; Ganesan S; Babu S; Padavattan S; Haradara Bahubali VK; Padmanabhan B
    Protein Sci; 2023 Sep; 32(9):e4737. PubMed ID: 37497650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are Phage Lytic Proteins the Secret Weapon To Kill
    Gutiérrez D; Fernández L; Rodríguez A; García P
    mBio; 2018 Jan; 9(1):. PubMed ID: 29362234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular and Enzymatic Determinants Impacting the Exolytic Action of an Anti-Staphylococcal Enzybiotic.
    Gouveia A; Pinto D; Vítor JMB; São-José C
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Domain Manipulation in the Staphylococcal Phage Endolysin, Endo88, on Lytic Efficiency and Host Range.
    Krishnan M; Tham HY; Wan Nur Ismah WAK; Yusoff K; Song AA
    Mol Biotechnol; 2024 Jun; ():. PubMed ID: 38904894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a Bacteriophage-Derived Murein Peptidase for Elimination of Antibiotic-Resistant Staphylococcus aureus.
    Keary R; Sanz-Gaitero M; van Raaij MJ; O'Mahony J; Fenton M; McAuliffe O; Hill C; Ross RP; Coffey A
    Curr Protein Pept Sci; 2016; 17(2):183-90. PubMed ID: 26521950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of the lytic CHAP(K) domain of the endolysin LysK from Staphylococcus aureus bacteriophage K.
    Sanz-Gaitero M; Keary R; Garcia-Doval C; Coffey A; van Raaij MJ
    Virol J; 2014 Jul; 11():133. PubMed ID: 25064136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of sequential treatment with minocycline and S. aureus specific phage lysin in eradication of MRSA biofilms: an in vitro study.
    Chopra S; Harjai K; Chhibber S
    Appl Microbiol Biotechnol; 2015 Apr; 99(7):3201-10. PubMed ID: 25707865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bioluminescent arsenite biosensor designed for inline water analyzer.
    Prévéral S; Brutesco C; Descamps ECT; Escoffier C; Pignol D; Ginet N; Garcia D
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):25-32. PubMed ID: 26769474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stable luciferase reporter plasmid for in vivo imaging in murine models of Staphylococcus aureus infections.
    Bacconi M; Haag AF; Torre A; Castagnetti A; Chiarot E; Delany I; Bensi G
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3197-206. PubMed ID: 26685857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effect of zingiber officinale towards Streptococcus mutans virulence and caries development: in vitro and in vivo studies.
    Hasan S; Danishuddin M; Khan AU
    BMC Microbiol; 2015 Jan; 15(1):1. PubMed ID: 25591663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of mobilizable mini-Tn7 vectors for bioluminescent detection of gram-negative bacteria and single-copy promoter lux reporter analysis.
    Damron FH; McKenney ES; Barbier M; Liechti GW; Schweizer HP; Goldberg JB
    Appl Environ Microbiol; 2013 Jul; 79(13):4149-53. PubMed ID: 23584769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of dichloromethane with a bioluminescent (lux) bacterial bioreporter.
    Lopes N; Hawkins SA; Jegier P; Menn FM; Sayler GS; Ripp S
    J Ind Microbiol Biotechnol; 2012 Jan; 39(1):45-53. PubMed ID: 21688172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistries and colors of bioluminescent reactions: a review.
    Hastings JW
    Gene; 1996; 173(1 Spec No):5-11. PubMed ID: 8707056
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.