These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 21468211)

  • 1. Metabolic engineering for improved microbial pentose fermentation.
    Fernandes S; Murray P
    Bioeng Bugs; 2010; 1(6):424-8. PubMed ID: 21468211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.
    Ghosh A; Zhao H; Price ND
    PLoS One; 2011; 6(11):e27316. PubMed ID: 22076150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae.
    Almeida JR; Runquist D; Sànchez i Nogué V; Lidén G; Gorwa-Grauslund MF
    Biotechnol J; 2011 Mar; 6(3):286-99. PubMed ID: 21305697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae.
    Madhavan A; Srivastava A; Kondo A; Bisaria VS
    Crit Rev Biotechnol; 2012 Mar; 32(1):22-48. PubMed ID: 21204601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae].
    Wang C; Li H; Xu L; Shen Y; Hou J; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1543-1555. PubMed ID: 30394022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing ethanol yields through d-xylose and l-arabinose co-fermentation after construction of a novel high efficient l-arabinose-fermenting Saccharomyces cerevisiae strain.
    Caballero A; Ramos JL
    Microbiology (Reading); 2017 Apr; 163(4):442-452. PubMed ID: 28443812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae.
    Hahn-Hägerdal B; Karhumaa K; Jeppsson M; Gorwa-Grauslund MF
    Adv Biochem Eng Biotechnol; 2007; 108():147-77. PubMed ID: 17846723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.
    Bera AK; Ho NW; Khan A; Sedlak M
    J Ind Microbiol Biotechnol; 2011 May; 38(5):617-26. PubMed ID: 20714780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective.
    Kwak S; Jin YS
    Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts.
    Ruchala J; Sibirny AA
    FEMS Microbiol Rev; 2021 Aug; 45(4):. PubMed ID: 33316044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering applications to renewable resource utilization.
    Aristidou A; Penttilä M
    Curr Opin Biotechnol; 2000 Apr; 11(2):187-98. PubMed ID: 10753763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering for improved fermentation of pentoses by yeasts.
    Jeffries TW; Jin YS
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):495-509. PubMed ID: 14595523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates.
    Oreb M; Dietz H; Farwick A; Boles E
    Bioengineered; 2012; 3(6):347-51. PubMed ID: 22892590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic Engineering for Improved Fermentation of L-Arabinose.
    Ye S; Kim JW; Kim SR
    J Microbiol Biotechnol; 2019 Mar; 29(3):339-346. PubMed ID: 30786700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.
    Verho R; Londesborough J; Penttilä M; Richard P
    Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bypassing the Pentose Phosphate Pathway: Towards Modular Utilization of Xylose.
    Chomvong K; Bauer S; Benjamin DI; Li X; Nomura DK; Cate JH
    PLoS One; 2016; 11(6):e0158111. PubMed ID: 27336308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR; Kwee NR; Kim H; Jin YS
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
    Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.