BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21468443)

  • 21. Downregulation of survivin expression and enhanced chemosensitivity of MCF-7 cells to adriamycin by PDMAE/survivin shRNA complex nanoparticles.
    Yang Y; Gao Y; Chen L; Huang Y; Li Y
    Int J Pharm; 2011 Feb; 405(1-2):188-95. PubMed ID: 21130850
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport of polymeric nanoparticle gene carriers in gastric mucus.
    Dawson M; Krauland E; Wirtz D; Hanes J
    Biotechnol Prog; 2004; 20(3):851-7. PubMed ID: 15176891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery.
    Li J; Loh XJ
    Adv Drug Deliv Rev; 2008 Jun; 60(9):1000-17. PubMed ID: 18413280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co-delivery of doxorubicin and plasmid by a novel FGFR-mediated cationic liposome.
    Xiao W; Chen X; Yang L; Mao Y; Wei Y; Chen L
    Int J Pharm; 2010 Jun; 393(1-2):119-26. PubMed ID: 20416367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and characterization of polyrotaxanes consisting of cationic alpha-cyclodextrins threaded on poly[(ethylene oxide)-ran-(propylene oxide)] as gene carriers.
    Yang C; Wang X; Li H; Goh SH; Li J
    Biomacromolecules; 2007 Nov; 8(11):3365-74. PubMed ID: 17929967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Poly(D,L-lactide-co-glycolide acid) nanoparticles for DNA delivery: waiving preparation complexity and increasing efficiency.
    Gvili K; Benny O; Danino D; Machluf M
    Biopolymers; 2007 Apr 5-15; 85(5-6):379-91. PubMed ID: 17266128
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient delivery of Bcl-2-targeted siRNA using cationic polymer nanoparticles: downregulating mRNA expression level and sensitizing cancer cells to anticancer drug.
    Beh CW; Seow WY; Wang Y; Zhang Y; Ong ZY; Ee PL; Yang YY
    Biomacromolecules; 2009 Jan; 10(1):41-8. PubMed ID: 19072631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrapure chitosan oligomers as carriers for corneal gene transfer.
    Klausner EA; Zhang Z; Chapman RL; Multack RF; Volin MV
    Biomaterials; 2010 Mar; 31(7):1814-20. PubMed ID: 19879644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymeric nanoparticles of cholesterol-modified glycol chitosan for doxorubicin delivery: preparation and in-vitro and in-vivo characterization.
    Yu JM; Li YJ; Qiu LY; Jin Y
    J Pharm Pharmacol; 2009 Jun; 61(6):713-9. PubMed ID: 19505361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intracellularly Degradable, Self-Assembled Amphiphilic Block Copolycurcumin Nanoparticles for Efficient In Vivo Cancer Chemotherapy.
    Lv L; Guo Y; Shen Y; Liu J; Zhang W; Zhou D; Guo S
    Adv Healthc Mater; 2015 Jul; 4(10):1496-501, 1423. PubMed ID: 26033838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A supramolecular approach to the preparation of charge-tunable dendritic polycations for efficient gene delivery.
    Dong R; Zhou L; Wu J; Tu C; Su Y; Zhu B; Gu H; Yan D; Zhu X
    Chem Commun (Camb); 2011 May; 47(19):5473-5. PubMed ID: 21483915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradable poly(beta-amino ester) nanoparticles for cancer cytoplasmic drug delivery.
    Shen Y; Tang H; Zhan Y; Van Kirk EA; Murdoch WJ
    Nanomedicine; 2009 Jun; 5(2):192-201. PubMed ID: 19223244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembly of amphiphilic tripeptides into nanoparticles for drug delivery.
    Tu Z; Xu X; Jian Y; Zhong D; He B; Gu Z
    Protein Pept Lett; 2014; 21(2):194-9. PubMed ID: 24188026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin.
    Zhang J; Chen XG; Li YY; Liu CS
    Nanomedicine; 2007 Dec; 3(4):258-65. PubMed ID: 17962086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer.
    Wong HL; Bendayan R; Rauth AM; Wu XY
    J Control Release; 2006 Dec; 116(3):275-84. PubMed ID: 17097178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coordination bonding based pH-responsive albumin nanoparticles for anticancer drug delivery.
    Li C; Xing L; Che S
    Dalton Trans; 2012 Apr; 41(13):3714-9. PubMed ID: 22370556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Folate-mediated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery.
    Zhang C; Zhao L; Dong Y; Zhang X; Lin J; Chen Z
    Eur J Pharm Biopharm; 2010 Sep; 76(1):10-6. PubMed ID: 20472060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photochemical internalization for pDNA transfection: evaluation of poly(d,l-lactide-co-glycolide) and poly(ethylenimine) nanoparticles.
    Gargouri M; Sapin A; Arıca-Yegin B; Merlin JL; Becuwe P; Maincent P
    Int J Pharm; 2011 Jan; 403(1-2):276-84. PubMed ID: 21044878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A library of aminoglycoside-derived lipopolymer nanoparticles for delivery of small molecules and nucleic acids.
    Godeshala S; Miryala B; Dutta S; Christensen MD; Nandi P; Chiu PL; Rege K
    J Mater Chem B; 2020 Sep; 8(37):8558-8572. PubMed ID: 32830211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of pH-responsive core-shell nanocarriers for delivery of therapeutic and diagnostic agents.
    Xu S; Luo Y; Graeser R; Warnecke A; Kratz F; Hauff P; Licha K; Haag R
    Bioorg Med Chem Lett; 2009 Feb; 19(3):1030-4. PubMed ID: 19097889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.