BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21468547)

  • 1. Interaction between protein 4.1R and spectrin heterodimers.
    Zhang DQ; Wang YP; Wang WH; Sui XM; Jiang JQ; Jiang XM; Xu ZS; Liu YG
    Mol Med Rep; 2011; 4(4):651-4. PubMed ID: 21468547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and functional characterization of protein 4.1R and actin-binding sites in erythrocyte beta spectrin: regulation of the interactions by phosphatidylinositol-4,5-bisphosphate.
    An X; Debnath G; Guo X; Liu S; Lux SE; Baines A; Gratzer W; Mohandas N
    Biochemistry; 2005 Aug; 44(31):10681-8. PubMed ID: 16060676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ubiquitination of spectrin regulates the erythrocyte spectrin-protein-4.1-actin ternary complex dissociation: implications for the sickle cell membrane skeleton.
    Ghatpande SS; Goodman SR
    Cell Mol Biol (Noisy-le-grand); 2004 Feb; 50(1):67-74. PubMed ID: 15040429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein 4.1, a multifunctional protein of the erythrocyte membrane skeleton: structure and functions in erythrocytes and nonerythroid cells.
    Takakuwa Y
    Int J Hematol; 2000 Oct; 72(3):298-309. PubMed ID: 11185985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectrin oligomerization is cooperatively coupled to membrane assembly: a linkage targeted by many hereditary hemolytic anemias?
    Giorgi M; Cianci CD; Gallagher PG; Morrow JS
    Exp Mol Pathol; 2001 Jun; 70(3):215-30. PubMed ID: 11418000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphatidylserine binding sites in erythroid spectrin: location and implications for membrane stability.
    An X; Guo X; Sum H; Morrow J; Gratzer W; Mohandas N
    Biochemistry; 2004 Jan; 43(2):310-5. PubMed ID: 14717584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The carboxyterminal EF domain of erythroid alpha-spectrin is necessary for optimal spectrin-actin binding.
    Korsgren C; Lux SE
    Blood; 2010 Oct; 116(14):2600-7. PubMed ID: 20585040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genetic defect in the binding of protein 4.1 to spectrin in a kindred with hereditary spherocytosis.
    Wolfe LC; John KM; Falcone JC; Byrne AM; Lux SE
    N Engl J Med; 1982 Nov; 307(22):1367-74. PubMed ID: 6215583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein 4.1 deficiency associated with an altered binding to the spectrin-actin complex of the red cell membrane skeleton.
    Lorenzo F; Dalla Venezia N; Morlé L; Baklouti F; Alloisio N; Ducluzeau MT; Roda L; Lefrançois P; Delaunay J
    J Clin Invest; 1994 Oct; 94(4):1651-6. PubMed ID: 7929842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red cell membrane skeleton: structure-function relationships.
    Palek J; Liu SC
    Prog Clin Biol Res; 1980; 43():21-44. PubMed ID: 6999502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The lethal hemolytic mutation in beta I sigma 2 spectrin Providence yields a null phenotype in neonatal skeletal muscle.
    Weed SA; Stabach PR; Oyer CE; Gallagher PG; Morrow JS
    Lab Invest; 1996 Jun; 74(6):1117-29. PubMed ID: 8667615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional interaction between Rh proteins and the spectrin-based skeleton in erythroid and epithelial cells.
    Nicolas V; Mouro-Chanteloup I; Lopez C; Gane P; Gimm A; Mohandas N; Cartron JP; Le Van Kim C; Colin Y
    Transfus Clin Biol; 2006; 13(1-2):23-8. PubMed ID: 16580865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The cytoskeletal proteins of erythrocytes].
    Goncharov EI; Pinaev GP
    Tsitologiia; 1988 Jan; 30(1):5-18. PubMed ID: 3282371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of spectrin-actin-binding domains in 4.1 family of proteins.
    Gimm JA; An X; Nunomura W; Mohandas N
    Biochemistry; 2002 Jun; 41(23):7275-82. PubMed ID: 12044158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane skeleton hyperstability due to a novel alternatively spliced 4.1R can account for ellipsoidal camelid red cells with decreased deformability.
    Chen Y; Miyazono K; Otsuka Y; Kanamori M; Yamashita A; Arashiki N; Matsumoto T; Takada K; Sato K; Mohandas N; Inaba M
    J Biol Chem; 2023 Feb; 299(2):102877. PubMed ID: 36621628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Disorders of the membrane skeleton of erythrocytes in hereditary spherocytosis and elliptocytosis: significance of the molecular defect for pathogenesis and clinical severity].
    Eber SW
    Klin Padiatr; 1991; 203(4):284-95. PubMed ID: 1942935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein 4.2 binds to the carboxyl-terminal EF-hands of erythroid alpha-spectrin in a calcium- and calmodulin-dependent manner.
    Korsgren C; Peters LL; Lux SE
    J Biol Chem; 2010 Feb; 285(7):4757-70. PubMed ID: 20007969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoskeletal Protein 4.1R in Health and Diseases.
    Liu J; Ding C; Liu X; Kang Q
    Biomolecules; 2024 Feb; 14(2):. PubMed ID: 38397451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Marked difference in membrane-protein-binding properties of the two isoforms of protein 4.1R expressed at early and late stages of erythroid differentiation.
    Nunomura W; Parra M; Hebiguchi M; Sawada K; Mohandas N; Takakuwa Y
    Biochem J; 2009 Jan; 417(1):141-8. PubMed ID: 18691159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization and remodeling of the membrane skeleton during lens fiber cell differentiation and maturation.
    Lee A; Fischer RS; Fowler VM
    Dev Dyn; 2000 Mar; 217(3):257-70. PubMed ID: 10741420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.