BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 21468630)

  • 1. Real-time thickness measurement of biological tissues using a microfabricated magnetically-driven lens actuator.
    Mansoor H; Zeng H; Chiao M
    Biomed Microdevices; 2011 Aug; 13(4):641-9. PubMed ID: 21468630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vertical optical sectioning using a magnetically driven confocal microscanner aimed for in vivo clinical imaging.
    Mansoor H; Zeng H; Chen K; Yu Y; Zhao J; Chiao M
    Opt Express; 2011 Dec; 19(25):25161-72. PubMed ID: 22273907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative method for measuring effective focal length of lenses using the front and back surface reflections from a reference plate.
    Kim DH; Shi D; Ilev IK
    Appl Opt; 2011 Sep; 50(26):5163-8. PubMed ID: 21946999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography.
    Kim KH; Park BH; Maguluri GN; Lee TW; Rogomentich FJ; Bancu MG; Bouma BE; de Boer JF; Bernstein JJ
    Opt Express; 2007 Dec; 15(26):18130-40. PubMed ID: 19551111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compact MEMS-driven pyramidal polygon reflector for circumferential scanned endoscopic imaging probe.
    Mu X; Zhou G; Yu H; Du Y; Feng H; Tsai JM; Chau FS
    Opt Express; 2012 Mar; 20(6):6325-39. PubMed ID: 22418514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues.
    Sung KB; Liang C; Descour M; Collier T; Follen M; Richards-Kortum R
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1168-72. PubMed ID: 12374341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated wide-angle scanner based on translating a curved mirror of acylindrical shape.
    Sabry YM; Khalil D; Saadany B; Bourouina T
    Opt Express; 2013 Jun; 21(12):13906-16. PubMed ID: 23787580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Video-rate scanning confocal microscopy and microendoscopy.
    Nichols AJ; Evans CL
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22042305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-tissue access with confocal fluorescence microendoscopy through hypodermic needles.
    Pillai RS; Lorenser D; Sampson DD
    Opt Express; 2011 Apr; 19(8):7213-21. PubMed ID: 21503033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rigid confocal endoscopy for in vivo imaging of experimental oral squamous intra-epithelial lesions.
    Farahati B; Stachs O; Prall F; Stave J; Guthoff R; Pau HW; Just T
    J Oral Pathol Med; 2010 Apr; 39(4):318-27. PubMed ID: 20050982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forward imaging OCT endoscopic catheter based on MEMS lens scanning.
    Park HC; Song C; Kang M; Jeong Y; Jeong KH
    Opt Lett; 2012 Jul; 37(13):2673-5. PubMed ID: 22743491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional scanning probe driven by a solenoid-based single actuator for optical coherence tomography.
    Min EJ; Shin JG; Kim Y; Lee BH
    Opt Lett; 2011 Jun; 36(11):1963-5. PubMed ID: 21633416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comb-drive tracking and focusing lens actuators integrated on a silicon-on-insulator wafer.
    Li P; Sasaki T; Pan LF; Hane K
    Opt Express; 2012 Jan; 20(1):627-34. PubMed ID: 22274386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MEMS-based handheld confocal microscope for in-vivo skin imaging.
    Arrasmith CL; Dickensheets DL; Mahadevan-Jansen A
    Opt Express; 2010 Feb; 18(4):3805-19. PubMed ID: 20389391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth.
    Briles TC; Yost DC; Cingöz A; Ye J; Schibli TR
    Opt Express; 2010 May; 18(10):9739-46. PubMed ID: 20588824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromachined lens microstages for two-dimensional forward optical scanning.
    Park HC; Song C; Jeong KH
    Opt Express; 2010 Jul; 18(15):16133-8. PubMed ID: 20720998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vivo confocal real-time mini-microscopy in animal models of human inflammatory and neoplastic diseases.
    Goetz M; Fottner C; Schirrmacher E; Delaney P; Gregor S; Schneider C; Strand D; Kanzler S; Memadathil B; Weyand E; Holtmann M; Schirrmacher R; Weber MM; Anlauf M; Klöppel G; Vieth M; Galle PR; Bartenstein P; Neurath MF; Kiesslich R
    Endoscopy; 2007 Apr; 39(4):350-6. PubMed ID: 17427071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A micro-optical system for endoscopy based on mechanical compensation paradigm using miniature piezo-actuation.
    Cerveri P; Zazzarini CC; Patete P; Baroni G
    Med Eng Phys; 2014 Jun; 36(6):684-93. PubMed ID: 24629626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of post-lens tear thickness.
    Lin MC; Graham AD; Polse KA; Mandell RB; McNamara NA
    Invest Ophthalmol Vis Sci; 1999 Nov; 40(12):2833-9. PubMed ID: 10549643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confocal microscopy in vivo in corneas of long-term contact lens wearers.
    Patel SV; McLaren JW; Hodge DO; Bourne WM
    Invest Ophthalmol Vis Sci; 2002 Apr; 43(4):995-1003. PubMed ID: 11923239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.