These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

33 related articles for article (PubMed ID: 21468987)

  • 1. Measuring in vivo signaling kinetics in a mitogen-activated kinase pathway using dynamic input stimulation.
    McClean MN; Hersen P; Ramanathan S
    Methods Mol Biol; 2011; 734():101-19. PubMed ID: 21468987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal processing by the HOG MAP kinase pathway.
    Hersen P; McClean MN; Mahadevan L; Ramanathan S
    Proc Natl Acad Sci U S A; 2008 May; 105(20):7165-70. PubMed ID: 18480263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell integrity signaling activation in response to hyperosmotic shock in yeast.
    García-Rodríguez LJ; Valle R; Durán A; Roncero C
    FEBS Lett; 2005 Nov; 579(27):6186-90. PubMed ID: 16243316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of mitogen-activated protein kinase signaling pathways that confer resistance to endoplasmic reticulum stress in Saccharomyces cerevisiae.
    Chen Y; Feldman DE; Deng C; Brown JA; De Giacomo AF; Gaw AF; Shi G; Le QT; Brown JM; Koong AC
    Mol Cancer Res; 2005 Dec; 3(12):669-77. PubMed ID: 16380504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes.
    Rodríguez-Peña JM; García R; Nombela C; Arroyo J
    Yeast; 2010 Aug; 27(8):495-502. PubMed ID: 20641030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and implementation of three mitogen-activated protein kinase (MAPK) signaling pathway imaging assays to provide MAPK module selectivity profiling for kinase inhibitors: MK2-EGFP translocation, c-Jun, and ERK activation.
    Nickischer D; Laethem C; Trask OJ; Williams RG; Kandasamy R; Johnston PA; Johnston PA
    Methods Enzymol; 2006; 414():389-418. PubMed ID: 17110204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitogen-activated protein kinase (MAPK) pathways mediate embryonic responses to culture medium osmolarity by regulating Aquaporin 3 and 9 expression and localization, as well as embryonic apoptosis.
    Bell CE; Larivière NM; Watson PH; Watson AJ
    Hum Reprod; 2009 Jun; 24(6):1373-86. PubMed ID: 19258345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formal representation of the high osmolarity glycerol pathway in yeast.
    Kühn C; Prasad KV; Klipp E; Gennemark P
    Genome Inform; 2010 Jan; 22():69-83. PubMed ID: 20238420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo measurement of signaling cascade dynamics.
    McClean MN; Hersen P; Ramanathan S
    Cell Cycle; 2009 Feb; 8(3):373-6. PubMed ID: 19177008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal quantification of MAPK induced expression in single yeast cells.
    Pelet S; Aymoz D; Durandau E
    J Vis Exp; 2013 Oct; (80):. PubMed ID: 24121725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal detection, modularity, and the correlation between extrinsic and intrinsic noise in biochemical networks.
    Tănase-Nicola S; Warren PB; ten Wolde PR
    Phys Rev Lett; 2006 Aug; 97(6):068102. PubMed ID: 17026206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated sensitivity analysis of stiff biochemical systems using a fourth-order adaptive step size Rosenbrock integration method.
    Zou R; Ghosh A
    Syst Biol (Stevenage); 2006 Mar; 153(2):79-90. PubMed ID: 16986256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theoretical framework for specificity in cell signaling.
    Komarova NL; Zou X; Nie Q; Bardwell L
    Mol Syst Biol; 2005; 1():2005.0023. PubMed ID: 16729058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform.
    Taylor RJ; Falconnet D; Niemistö A; Ramsey SA; Prinz S; Shmulevich I; Galitski T; Hansen CL
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3758-63. PubMed ID: 19223588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Dynamical Systems Properties of the HOG Signaling Cascade.
    Miermont A; Uhlendorf J; McClean M; Hersen P
    J Signal Transduct; 2011; 2011():930940. PubMed ID: 21637384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bistability in biochemical signaling models.
    Sobie EA
    Sci Signal; 2011 Sep; 4(192):tr10. PubMed ID: 21954291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards real-time control of gene expression: controlling the HOG signaling cascade.
    Uhlendorf J; Bottani S; Fages F; Hersen P; Batt G
    Pac Symp Biocomput; 2011; ():338-49. PubMed ID: 21121061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput microfluidics to control and measure signaling dynamics in single yeast cells.
    Hansen AS; Hao N; O'Shea EK
    Nat Protoc; 2015 Aug; 10(8):1181-97. PubMed ID: 26158443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic system for studying ageing and dynamic single-cell responses in budding yeast.
    Crane MM; Clark IB; Bakker E; Smith S; Swain PS
    PLoS One; 2014; 9(6):e100042. PubMed ID: 24950344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise and interlocking signaling pathways promote distinct transcription factor dynamics in response to different stresses.
    Petrenko N; Chereji RV; McClean MN; Morozov AV; Broach JR
    Mol Biol Cell; 2013 Jun; 24(12):2045-57. PubMed ID: 23615444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.