These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 21469156)

  • 1. Performance enhancements for GROMACS nonbonded interactions on BlueGene.
    Abraham MJ
    J Comput Chem; 2011 Jul; 32(9):2041-6. PubMed ID: 21469156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic benchmarking of large molecular dynamics simulations employing GROMACS on massive multiprocessing facilities.
    Gruber CC; Pleiss J
    J Comput Chem; 2011 Mar; 32(4):600-6. PubMed ID: 20812321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5.
    Abraham MJ; Gready JE
    J Comput Chem; 2011 Jul; 32(9):2031-40. PubMed ID: 21469158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. jSimMacs for GROMACS: a Java application for advanced molecular dynamics simulations with remote access capability.
    Roopra S; Knapp B; Omasits U; Schreiner W
    J Chem Inf Model; 2009 Oct; 49(10):2412-7. PubMed ID: 19852516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gro2mat: a package to efficiently read gromacs output in MATLAB.
    Dien H; Deane CM; Knapp B
    J Comput Chem; 2014 Jul; 35(20):1528-31. PubMed ID: 24920464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient lookup table using a linear function of inverse distance squared.
    Jung J; Mori T; Sugita Y
    J Comput Chem; 2013 Oct; 34(28):2412-20. PubMed ID: 23934755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enabling grand-canonical Monte Carlo: extending the flexibility of GROMACS through the GromPy python interface module.
    Pool R; Heringa J; Hoefling M; Schulz R; Smith JC; Feenstra KA
    J Comput Chem; 2012 May; 33(12):1207-14. PubMed ID: 22370965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient table lookup without inverse square roots for calculation of pair wise atomic interactions in classical simulations.
    Nilsson L
    J Comput Chem; 2009 Jul; 30(9):1490-8. PubMed ID: 19072764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OBGMX: a web-based generator of GROMACS topologies for molecular and periodic systems using the universal force field.
    Garberoglio G
    J Comput Chem; 2012 Oct; 33(27):2204-8. PubMed ID: 22718537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of the CHARMM27 force field with united-atom lipid force fields.
    Sapay N; Tieleman DP
    J Comput Chem; 2011 May; 32(7):1400-10. PubMed ID: 21425293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular docking and molecular dynamics simulation studies of GPR40 receptor-agonist interactions.
    Lu SY; Jiang YJ; Lv J; Wu TX; Yu QS; Zhu WL
    J Mol Graph Model; 2010 Jun; 28(8):766-74. PubMed ID: 20227312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of MDGRAPE-3, a special purpose board for molecular dynamics simulations, to periodic biomolecular systems.
    Kikugawa G; Apostolov R; Kamiya N; Taiji M; Himeno R; Nakamura H; Yonezawa Y
    J Comput Chem; 2009 Jan; 30(1):110-8. PubMed ID: 18524021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CPU/MIC Collaborated Parallel Framework for GROMACS on Tianhe-2 Supercomputer.
    Peng S; Cui Y; Yang S; Su W; Zhang X; Zhang T; Liu W; Zhao X
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):425-433. PubMed ID: 28641267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. gmxapi: A GROMACS-native Python interface for molecular dynamics with ensemble and plugin support.
    Irrgang ME; Davis C; Kasson PM
    PLoS Comput Biol; 2022 Feb; 18(2):e1009835. PubMed ID: 35157693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvements in GROMACS plugin for PyMOL including implicit solvent simulations and displaying results of PCA analysis.
    Makarewicz T; Kaźmierkiewicz R
    J Mol Model; 2016 May; 22(5):109. PubMed ID: 27107576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inherent speedup limitations in multiple time step/particle mesh Ewald algorithms.
    Barash D; Yang L; Qian X; Schlick T
    J Comput Chem; 2003 Jan; 24(1):77-88. PubMed ID: 12483677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A GPU-Accelerated Fast Multipole Method for GROMACS: Performance and Accuracy.
    Kohnke B; Kutzner C; Grubmüller H
    J Chem Theory Comput; 2020 Nov; 16(11):6938-6949. PubMed ID: 33084336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A GPU solvent-solvent interaction calculation accelerator for biomolecular simulations using the GROMOS software.
    Schmid N; Bötschi M; van Gunsteren WF
    J Comput Chem; 2010 Jun; 31(8):1636-43. PubMed ID: 20127715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. phbuilder: A Tool for Efficiently Setting up Constant pH Molecular Dynamics Simulations in GROMACS.
    Jansen A; Aho N; Groenhof G; Buslaev P; Hess B
    J Chem Inf Model; 2024 Feb; 64(3):567-574. PubMed ID: 38215282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational analysis of hydroxymatairesinol in aqueous solution with molecular dynamics.
    Sandberg T; Hotokka M
    J Comput Chem; 2009 Dec; 30(16):2666-73. PubMed ID: 19396812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.