These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21469160)

  • 1. Determining equilibrium constants for dimerization reactions from molecular dynamics simulations.
    De Jong DH; Schäfer LV; De Vries AH; Marrink SJ; Berendsen HJ; Grubmüller H
    J Comput Chem; 2011 Jul; 32(9):1919-28. PubMed ID: 21469160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the recognition and association of transmembrane alpha-helices. The free energy of alpha-helix dimerization in glycophorin A.
    Hénin J; Pohorille A; Chipot C
    J Am Chem Soc; 2005 Jun; 127(23):8478-84. PubMed ID: 15941282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase.
    Archontis G; Simonson T; Karplus M
    J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helix-helix interactions in membrane proteins: coarse-grained simulations of glycophorin a helix dimerization.
    Psachoulia E; Fowler PW; Bond PJ; Sansom MS
    Biochemistry; 2008 Oct; 47(40):10503-12. PubMed ID: 18783247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multistate organization of transmembrane helical protein dimers governed by the host membrane.
    Polyansky AA; Volynsky PE; Efremov RG
    J Am Chem Soc; 2012 Sep; 134(35):14390-400. PubMed ID: 22889089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations.
    Petrache HI; Grossfield A; MacKenzie KR; Engelman DM; Woolf TB
    J Mol Biol; 2000 Sep; 302(3):727-46. PubMed ID: 10986130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The trigger sequence in the GCN4 leucine zipper: alpha-helical propensity and multistate dynamics of folding and dimerization.
    Chapagain PP; Liu Y; Gerstman BS
    J Chem Phys; 2008 Nov; 129(17):175103. PubMed ID: 19045375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory.
    Thomas AS; Elcock AH
    J Am Chem Soc; 2006 Jun; 128(24):7796-806. PubMed ID: 16771493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absolute free energies of binding of peptide analogs to the HIV-1 protease from molecular dynamics simulations.
    Bartels C; Widmer A; Ehrhardt C
    J Comput Chem; 2005 Sep; 26(12):1294-305. PubMed ID: 15981257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of liquid imidazole using a high-rank quantum topological electrostatic potential.
    Shaik MS; Liem SY; Yuan Y; Popelier PL
    Phys Chem Chem Phys; 2010 Dec; 12(45):15040-55. PubMed ID: 20967311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculations of pH-dependent binding of proteins to biological membranes.
    Mihajlovic M; Lazaridis T
    J Phys Chem B; 2006 Feb; 110(7):3375-84. PubMed ID: 16494352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferric uptake regulator protein: binding free energy calculations and per-residue free energy decomposition.
    Ahmad R; Brandsdal BO; Michaud-Soret I; Willassen NP
    Proteins; 2009 May; 75(2):373-86. PubMed ID: 18831042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials.
    Ge X; Roux B
    J Mol Recognit; 2010; 23(2):128-41. PubMed ID: 20151411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A challenging system: free energy prediction for factor Xa.
    Wallnoefer HG; Liedl KR; Fox T
    J Comput Chem; 2011 Jun; 32(8):1743-52. PubMed ID: 21374633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of energy values to the analysis of global searching molecular dynamics simulations of transmembrane helical bundles.
    Torres J; Briggs JA; Arkin IT
    Biophys J; 2002 Jun; 82(6):3063-71. PubMed ID: 12023229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico prediction of drug solubility: 2. Free energy of solvation in pure melts.
    Lüder K; Lindfors L; Westergren J; Nordholm S; Kjellander R
    J Phys Chem B; 2007 Feb; 111(7):1883-92. PubMed ID: 17266352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of the microsolvation-continuum approach in computing the pK(a) and the free energies of formation of phosphate species in aqueous solution.
    Tang E; Di Tommaso D; de Leeuw NH
    Phys Chem Chem Phys; 2010 Nov; 12(41):13804-15. PubMed ID: 20862433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How well does Poisson-Boltzmann implicit solvent agree with explicit solvent? A quantitative analysis.
    Tan C; Yang L; Luo R
    J Phys Chem B; 2006 Sep; 110(37):18680-7. PubMed ID: 16970499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Packing interactions of Aib-containing helices: molecular modeling of parallel dimers of simple hydrophobic helices and of alamethicin.
    Breed J; Kerr ID; Sankararamakrishnan R; Sansom MS
    Biopolymers; 1995 Jun; 35(6):639-55. PubMed ID: 7766829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of protein surface hydration shell free energy of water motion: theoretical study and molecular dynamics simulation.
    Sheu SY; Yang DY
    J Phys Chem B; 2010 Dec; 114(49):16558-66. PubMed ID: 21090707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.