These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 21469164)
1. Evolution of lone pair of excess electrons inside molecular cages with the deformation of the cage in e2@C60F60 systems. Wang YF; Chen W; Yu GT; Li ZR; Wu D; Sun CC J Comput Chem; 2011 Jul; 32(9):2012-21. PubMed ID: 21469164 [TBL] [Abstract][Full Text] [Related]
2. Excess electron is trapped in a large single molecular cage C60F60. Wang YF; Li ZR; Wu D; Sun CC; Gu FL J Comput Chem; 2010 Jan; 31(1):195-203. PubMed ID: 19421999 [TBL] [Abstract][Full Text] [Related]
3. Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 1. Full configuration interaction (CI) excited-state relaxation dynamics of hydrated dielectrons. Larsen RE; Schwartz BJ J Phys Chem B; 2006 May; 110(19):9681-91. PubMed ID: 16686519 [TBL] [Abstract][Full Text] [Related]
4. The triplet state of cytosine and its derivatives: electron impact and quantum chemical study. Abouaf R; Pommier J; Dunet H; Quan P; Nam PC; Nguyen MT J Chem Phys; 2004 Dec; 121(23):11668-74. PubMed ID: 15634133 [TBL] [Abstract][Full Text] [Related]
5. Preparation and structure of CeSc2N@C80: an icosahedral carbon cage enclosing an acentric CeSc2N unit with buried f electron spin. Wang X; Zuo T; Olmstead MM; Duchamp JC; Glass TE; Cromer F; Balch AL; Dorn HC J Am Chem Soc; 2006 Jul; 128(27):8884-9. PubMed ID: 16819883 [TBL] [Abstract][Full Text] [Related]
6. How does a double-cage single molecule confine an excess electron? Unusual intercage excess electron transfer transition. Wang YF; Li ZR; Wu D; Li Y; Sun CC; Gu FL J Phys Chem A; 2010 Nov; 114(43):11782-7. PubMed ID: 20882986 [TBL] [Abstract][Full Text] [Related]
7. Comparison of electronic structures and light-induced excited spin state trapping between [Fe(2-picolylamine)(3)](2+) and its iron(III) analogue. Ando H; Nakao Y; Sato H; Sakaki S Dalton Trans; 2010 Feb; 39(7):1836-45. PubMed ID: 20449430 [TBL] [Abstract][Full Text] [Related]
8. Energy and electron transfer in beta-alkynyl-linked porphyrin-[60]fullerene dyads. Vail SA; Schuster DI; Guldi DM; Isosomppi M; Tkachenko N; Lemmetyinen H; Palkar A; Echegoyen L; Chen X; Zhang JZ J Phys Chem B; 2006 Jul; 110(29):14155-66. PubMed ID: 16854114 [TBL] [Abstract][Full Text] [Related]
9. Insertion of C50 into single-walled carbon nanotubes: Selectivity in interwall spacing and C50 isomers. Zhou Z; Zhao J; Schleyer Pv; Chen Z J Comput Chem; 2008 Apr; 29(5):781-7. PubMed ID: 17876758 [TBL] [Abstract][Full Text] [Related]
10. Structure, stability, and NMR properties of lower fullerenes C38-C50 and azafullerene C44N6. Sun G; Nicklaus MC; Xie RH J Phys Chem A; 2005 May; 109(20):4617-22. PubMed ID: 16833800 [TBL] [Abstract][Full Text] [Related]
11. New acceptor-bridge-donor strategy for enhancing NLO response with long-range excess electron transfer from the NH2...M/M3O donor (M = Li, Na, K) to inside the electron hole cage C20F19 acceptor through the unusual σ chain bridge (CH2)4. Bai Y; Zhou ZJ; Wang JJ; Li Y; Wu D; Chen W; Li ZR; Sun CC J Phys Chem A; 2013 Apr; 117(13):2835-43. PubMed ID: 23488897 [TBL] [Abstract][Full Text] [Related]
12. Electronic structures and nonlinear optical properties of highly deformed halofullerenes C(3v) C60F18 and D(3d) C60Cl30. Tang SW; Feng JD; Qiu YQ; Sun H; Wang FD; Chang YF; Wang RS J Comput Chem; 2010 Nov; 31(14):2650-7. PubMed ID: 20740565 [TBL] [Abstract][Full Text] [Related]
13. Preparation and characterization of (CNSSS)2(A)2 (A = AsF6(-), SbF6(-), Sb2F11(-)) containing the O2-like 5,5'-bis(1,2,3,4-trithiazolium) dication: the second example of a simple nonsterically hindered main-group diradical that retains its paramagnetism in the solid state. Cameron TS; Decken A; Grein F; Knapp C; Passmore J; Rautiainen JM; Shuvaev KV; Thompson RC; Wood DJ Inorg Chem; 2010 Sep; 49(17):7861-79. PubMed ID: 20698504 [TBL] [Abstract][Full Text] [Related]
14. Accuracy and limitations of second-order many-body perturbation theory for predicting vertical detachment energies of solvated-electron clusters. Herbert JM; Head-Gordon M Phys Chem Chem Phys; 2006 Jan; 8(1):68-78. PubMed ID: 16482246 [TBL] [Abstract][Full Text] [Related]
15. A density functional theory study of shake-up satellites in photoemission of carbon fullerenes and nanotubes. Gao B; Wu Z; Luo Y J Chem Phys; 2008 Jun; 128(23):234704. PubMed ID: 18570516 [TBL] [Abstract][Full Text] [Related]
16. Theoretical study on the ground state structure of uranofullerene U@C82. Liu X; Li L; Liu B; Wang D; Zhao Y; Gao X J Phys Chem A; 2012 Nov; 116(47):11651-5. PubMed ID: 23134567 [TBL] [Abstract][Full Text] [Related]
17. Mapping the metal positions inside spherical C80 cages: crystallographic and theoretical studies of Ce2@D(5h)-C80 and Ce2@I(h)-C80. Feng L; Suzuki M; Mizorogi N; Lu X; Yamada M; Akasaka T; Nagase S Chemistry; 2013 Jan; 19(3):988-93. PubMed ID: 23255312 [TBL] [Abstract][Full Text] [Related]
18. Structure and energetics of Fe2(CO)8 singlet and triplet electronic states. Bertini L; Bruschi M; De Gioia L; Fantucci P J Phys Chem A; 2007 Dec; 111(48):12152-62. PubMed ID: 17988105 [TBL] [Abstract][Full Text] [Related]
19. Understanding the stabilization of metal carbide endohedral fullerenes M2C2@C82 and related systems. Valencia R; Rodríguez-Fortea A; Poblet JM J Phys Chem A; 2008 May; 112(20):4550-5. PubMed ID: 18438990 [TBL] [Abstract][Full Text] [Related]
20. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes. Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]