These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 21469680)
1. A new standardized electrochemical array for drug metabolic profiling with human cytochromes P450. Fantuzzi A; Mak LH; Capria E; Dodhia V; Panicco P; Collins S; Gilardi G Anal Chem; 2011 May; 83(10):3831-9. PubMed ID: 21469680 [TBL] [Abstract][Full Text] [Related]
2. Predicting drug metabolism by cytochrome P450 2C9: comparison with the 2D6 and 3A4 isoforms. Rydberg P; Olsen L ChemMedChem; 2012 Jul; 7(7):1202-9. PubMed ID: 22593031 [TBL] [Abstract][Full Text] [Related]
3. Relative contributions of the five major human cytochromes P450, 1A2, 2C9, 2C19, 2D6, and 3A4, to the hepatic metabolism of the proteasome inhibitor bortezomib. Uttamsingh V; Lu C; Miwa G; Gan LS Drug Metab Dispos; 2005 Nov; 33(11):1723-8. PubMed ID: 16103134 [TBL] [Abstract][Full Text] [Related]
4. Importance of hydrophobic parameters in identifying appropriate pose of CYP substrates in cytochromes. Ramesh M; Bharatam PV Eur J Med Chem; 2014 Jan; 71():15-23. PubMed ID: 24269512 [TBL] [Abstract][Full Text] [Related]
5. In vitro metabolism of the calmodulin antagonist DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate) by human liver microsomes: involvement of cytochromes p450 in atypical kinetics and potential drug interactions. Tachibana S; Fujimaki Y; Yokoyama H; Okazaki O; Sudo K Drug Metab Dispos; 2005 Nov; 33(11):1628-36. PubMed ID: 16049129 [TBL] [Abstract][Full Text] [Related]
6. Prediction of in vivo drug-drug interactions from in vitro data : factors affecting prototypic drug-drug interactions involving CYP2C9, CYP2D6 and CYP3A4. Brown HS; Galetin A; Hallifax D; Houston JB Clin Pharmacokinet; 2006; 45(10):1035-50. PubMed ID: 16984215 [TBL] [Abstract][Full Text] [Related]
7. Flexibility of human cytochrome P450 enzymes: molecular dynamics and spectroscopy reveal important function-related variations. Hendrychová T; Anzenbacherová E; Hudeček J; Skopalík J; Lange R; Hildebrandt P; Otyepka M; Anzenbacher P Biochim Biophys Acta; 2011 Jan; 1814(1):58-68. PubMed ID: 20656072 [TBL] [Abstract][Full Text] [Related]
8. Structural diversity of human xenobiotic-metabolizing cytochrome P450 monooxygenases. Johnson EF; Stout CD Biochem Biophys Res Commun; 2005 Dec; 338(1):331-6. PubMed ID: 16157296 [TBL] [Abstract][Full Text] [Related]
9. An electrochemical microfluidic platform for human P450 drug metabolism profiling. Fantuzzi A; Capria E; Mak LH; Dodhia VR; Sadeghi SJ; Collins S; Somers G; Huq E; Gilardi G Anal Chem; 2010 Dec; 82(24):10222-7. PubMed ID: 21105702 [TBL] [Abstract][Full Text] [Related]
10. Structure-based methods for the prediction of the dominant P450 enzyme in human drug biotransformation: consideration of CYP3A4, CYP2C9, CYP2D6. Manga N; Duffy JC; Rowe PH; Cronin MT SAR QSAR Environ Res; 2005; 16(1-2):43-61. PubMed ID: 15844442 [TBL] [Abstract][Full Text] [Related]
11. In vitro characterization of sarizotan metabolism: hepatic clearance, identification and characterization of metabolites, drug-metabolizing enzyme identification, and evaluation of cytochrome p450 inhibition. Gallemann D; Wimmer E; Höfer CC; Freisleben A; Fluck M; Ladstetter B; Dolgos H Drug Metab Dispos; 2010 Jun; 38(6):905-16. PubMed ID: 20219851 [TBL] [Abstract][Full Text] [Related]
12. Identification of the human cytochromes p450 responsible for in vitro formation of R- and S-norfluoxetine. Ring BJ; Eckstein JA; Gillespie JS; Binkley SN; VandenBranden M; Wrighton SA J Pharmacol Exp Ther; 2001 Jun; 297(3):1044-50. PubMed ID: 11356927 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the inhibitory potential of Ginkgo biloba, Echinacea purpurea, and Serenoa repens on the metabolic activity of cytochrome P450 3A4, 2D6, and 2C9. Yale SH; Glurich I J Altern Complement Med; 2005 Jun; 11(3):433-9. PubMed ID: 15992226 [TBL] [Abstract][Full Text] [Related]
14. Human cytochrome P450 3A4 and a carbon nanofiber modified film electrode as a platform for the simple evaluation of drug metabolism and inhibition reactions. Xue Q; Kato D; Kamata T; Guo Q; You T; Niwa O Analyst; 2013 Nov; 138(21):6463-8. PubMed ID: 24027778 [TBL] [Abstract][Full Text] [Related]
15. Inhibitory effects of sanguinarine on human liver cytochrome P450 enzymes. Qi XY; Liang SC; Ge GB; Liu Y; Dong PP; Zhang JW; Wang AX; Hou J; Zhu LL; Yang L; Tu CX Food Chem Toxicol; 2013 Jun; 56():392-7. PubMed ID: 23500771 [TBL] [Abstract][Full Text] [Related]
16. Progress in cytochrome P450 active site modeling. Kemp CA; Maréchal JD; Sutcliffe MJ Arch Biochem Biophys; 2005 Jan; 433(2):361-8. PubMed ID: 15581592 [TBL] [Abstract][Full Text] [Related]
17. Assessment of drug-drug interaction for silymarin. Doehmer J; Tewes B; Klein KU; Gritzko K; Muschick H; Mengs U Toxicol In Vitro; 2008 Apr; 22(3):610-7. PubMed ID: 18249085 [TBL] [Abstract][Full Text] [Related]
18. Enzyme-based amperometric platform to determine the polymorphic response in drug metabolism by cytochromes P450. Panicco P; Dodhia VR; Fantuzzi A; Gilardi G Anal Chem; 2011 Mar; 83(6):2179-86. PubMed ID: 21348440 [TBL] [Abstract][Full Text] [Related]
19. Ferrous and ferric state of cytochromes P450 in intact Escherichia coli cells: a possible role of cytochrome P450-flavodoxin interactions. Culka M; Milichovsky J; Jerabek P; Stiborova M; Martinek V Neuro Endocrinol Lett; 2015; 36 Suppl 1():29-37. PubMed ID: 26757119 [TBL] [Abstract][Full Text] [Related]
20. Flexibility of human cytochromes P450: molecular dynamics reveals differences between CYPs 3A4, 2C9, and 2A6, which correlate with their substrate preferences. Skopalík J; Anzenbacher P; Otyepka M J Phys Chem B; 2008 Jul; 112(27):8165-73. PubMed ID: 18598011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]