BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21469740)

  • 1. Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber.
    Warren-Smith SC; Heng S; Ebendorff-Heidepriem H; Abell AD; Monro TM
    Langmuir; 2011 May; 27(9):5680-5. PubMed ID: 21469740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposed-core microstructured optical fibers for real-time fluorescence sensing.
    Warren-Smith SC; Ebendorff-Heidepriem H; Foo TC; Moore R; Davis C; Monro TM
    Opt Express; 2009 Oct; 17(21):18533-42. PubMed ID: 20372584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructured Optical Fiber-based Biosensors: Reversible and Nanoliter-Scale Measurement of Zinc Ions.
    Heng S; McDevitt CA; Kostecki R; Morey JR; Eijkelkamp BA; Ebendorff-Heidepriem H; Monro TM; Abell AD
    ACS Appl Mater Interfaces; 2016 May; 8(20):12727-32. PubMed ID: 27152578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence-based sensing with optical nanowires: a generalized model and experimental validation.
    Warren-Smith SC; Afshar S; Monro TM
    Opt Express; 2010 Apr; 18(9):9474-85. PubMed ID: 20588793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular beacons immobilized within suspended core optical fiber for specific DNA detection.
    Nguyen LV; Warren-Smith SC; Cooper A; Monro TM
    Opt Express; 2012 Dec; 20(28):29378-85. PubMed ID: 23388765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization.
    Schartner EP; Jin D; Ebendorff-Heidepriem H; Piper JA; Lu Z; Monro TM
    Nanoscale; 2012 Dec; 4(23):7448-51. PubMed ID: 23086019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Functionalization of Exposed Core Glass Optical Fiber for Metal Ion Sensing.
    Bachhuka A; Heng S; Vasilev K; Kostecki R; Abell A; Ebendorff-Heidepriem H
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30999613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Casting method for producing low-loss chalcogenide microstructured optical fibers.
    Coulombier Q; Brilland L; Houizot P; Chartier T; N'guyen TN; Smektala F; Renversez G; Monteville A; Méchin D; Pain T; Orain H; Sangleboeuf JC; Trolès J
    Opt Express; 2010 Apr; 18(9):9107-12. PubMed ID: 20588758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monolayer-functionalized microfluidics devices for optical sensing of acidity.
    Mela P; Onclin S; Goedbloed MH; Levi S; Garcia-Parajo MF; van Hulst NF; Ravoo BJ; Reinhoudt DN; van den Berg A
    Lab Chip; 2005 Feb; 5(2):163-70. PubMed ID: 15672130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planar fiber-optic chips for broadband spectroscopic interrogation of thin films.
    Beam BM; Shallcross RC; Jang J; Armstrong NR; Mendes SB
    Appl Spectrosc; 2007 Jun; 61(6):585-92. PubMed ID: 17650368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of the fluorescence sensing performance of microstructured optical fibers compared to multi-mode fiber tips.
    Schartner EP; Tsiminis G; Henderson MR; Warren-Smith SC; Monro TM
    Opt Express; 2016 Aug; 24(16):18541-50. PubMed ID: 27505817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic refractometric sensor based on gratings in optical fibre microwires.
    Xu F; Brambilla G; Lu Y
    Opt Express; 2009 Nov; 17(23):20866-71. PubMed ID: 19997322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time determination of picomolar free Cu(II) in seawater using a fluorescence-based fiber optic biosensor.
    Zeng HH; Thompson RB; Maliwal BP; Fones GR; Moffett JW; Fierke CA
    Anal Chem; 2003 Dec; 75(24):6807-12. PubMed ID: 14670039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core.
    Luan N; Wang R; Lv W; Yao J
    Opt Express; 2015 Apr; 23(7):8576-82. PubMed ID: 25968695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent-dye-doped sol-gel sensor for highly sensitive carbon dioxide gas detection below atmospheric concentrations.
    Dansby-Sparks RN; Jin J; Mechery SJ; Sampathkumaran U; Owen TW; Yu BD; Goswami K; Hong K; Grant J; Xue ZL
    Anal Chem; 2010 Jan; 82(2):593-600. PubMed ID: 20038093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature sensing up to 1300°C using suspended-core microstructured optical fibers.
    Warren-Smith SC; Nguyen LV; Lang C; Ebendorff-Heidepriem H; Monro TM
    Opt Express; 2016 Feb; 24(4):3714-9. PubMed ID: 26907027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of swelling of responsive gels with nanometer resolution. Fiber-optic based platform for hydrogels as signal transducers.
    Tierney S; Hjelme DR; Stokke BT
    Anal Chem; 2008 Jul; 80(13):5086-93. PubMed ID: 18491924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic-resonance evaluation of the suitability of microstructured polymer optical fibers as sensors for ionic aqueous solutions.
    Cox FM; Momot KI; Kuchel PW
    ACS Appl Mater Interfaces; 2009 Jan; 1(1):197-203. PubMed ID: 20355772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinduced electron transfer based ion sensing within an optical fiber.
    Englich FV; Foo TC; Richardson AC; Ebendorff-Heidepriem H; Sumby CJ; Monro TM
    Sensors (Basel); 2011; 11(10):9560-72. PubMed ID: 22163712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructured chalcogenide optical fibers from As(2)S(3) glass: towards new IR broadband sources.
    El-Amraoui M; Gadret G; Jules JC; Fatome J; Fortier C; Désévédavy F; Skripatchev I; Messaddeq Y; Troles J; Brilland L; Gao W; Suzuki T; Ohishi Y; Smektala F
    Opt Express; 2010 Dec; 18(25):26655-65. PubMed ID: 21165016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.