These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21469879)

  • 1. Modifying fragility and collective motion in polymer melts with nanoparticles.
    Starr FW; Douglas JF
    Phys Rev Lett; 2011 Mar; 106(11):115702. PubMed ID: 21469879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning polymer melt fragility with antiplasticizer additives.
    Riggleman RA; Douglas JF; de Pablo JJ
    J Chem Phys; 2007 Jun; 126(23):234903. PubMed ID: 17600442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragility of glass-forming polymer liquids.
    Dudowicz J; Freed KF; Douglas JF
    J Phys Chem B; 2005 Nov; 109(45):21350-6. PubMed ID: 16853769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the potential energy landscape of an antiplasticized polymer.
    Riggleman RA; Douglas JF; de Pablo JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011504. PubMed ID: 17677447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially heterogeneous dynamics and the Adam-Gibbs relation in the Dzugutov liquid.
    Gebremichael Y; Vogel M; Bergroth MN; Starr FW; Glotzer SC
    J Phys Chem B; 2005 Aug; 109(31):15068-79. PubMed ID: 16852907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stringlike Cooperative Motion Explains the Influence of Pressure on Relaxation in a Model Glass-Forming Polymer Melt.
    Xu WS; Douglas JF; Freed KF
    ACS Macro Lett; 2016 Dec; 5(12):1375-1380. PubMed ID: 35651209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?
    Douglas JF; Dudowicz J; Freed KF
    J Chem Phys; 2006 Oct; 125(14):144907. PubMed ID: 17042650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys.
    Zhang H; Zhong C; Douglas JF; Wang X; Cao Q; Zhang D; Jiang JZ
    J Chem Phys; 2015 Apr; 142(16):164506. PubMed ID: 25933773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic heterogeneity and collective motion in star polymer melts.
    Fan J; Emamy H; Chremos A; Douglas JF; Starr FW
    J Chem Phys; 2020 Feb; 152(5):054904. PubMed ID: 32035474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragility and cooperative motion in a glass-forming polymer-nanoparticle composite.
    Betancourt BA; Douglas JF; Starr FW
    Soft Matter; 2013 Jan; 9(1):241-254. PubMed ID: 25328534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials.
    Pazmiño Betancourt BA; Hanakata PZ; Starr FW; Douglas JF
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):2966-71. PubMed ID: 25713371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticization and antiplasticization of polymer melts diluted by low molar mass species.
    Stukalin EB; Douglas JF; Freed KF
    J Chem Phys; 2010 Feb; 132(8):084504. PubMed ID: 20192304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial mobility scale determines the scale of collective motion and relaxation rate in polymer films.
    Hanakata PZ; Douglas JF; Starr FW
    Nat Commun; 2014 Jun; 5():4163. PubMed ID: 24932594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Route to calculate the length scale for the glass transition in polymers.
    Cangialosi D; Alegría A; Colmenero J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011514. PubMed ID: 17677457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation.
    Starr FW; Douglas JF; Sastry S
    J Chem Phys; 2013 Mar; 138(12):12A541. PubMed ID: 23556792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. String-like collective atomic motion in the melting and freezing of nanoparticles.
    Zhang H; Kalvapalle P; Douglas JF
    J Phys Chem B; 2011 Dec; 115(48):14068-76. PubMed ID: 21718061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer brushes: a controllable system with adjustable glass transition temperature of fragile glass formers.
    Xie SJ; Qian HJ; Lu ZY
    J Chem Phys; 2014 Jan; 140(4):044901. PubMed ID: 25669577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Democratic particle motion for metabasin transitions in simple glass formers.
    Appignanesi GA; Rodríguez Fris JA; Montani RA; Kob W
    Phys Rev Lett; 2006 Feb; 96(5):057801. PubMed ID: 16486989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model for reversible nanoparticle assembly in a polymer matrix.
    Rahedi AJ; Douglas JF; Starr FW
    J Chem Phys; 2008 Jan; 128(2):024902. PubMed ID: 18205470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature dependent micro-rheology of a glass-forming polymer melt studied by molecular dynamics simulation.
    Kuhnhold A; Paul W
    J Chem Phys; 2014 Sep; 141(12):124907. PubMed ID: 25273474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.