These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 21469959)

  • 21. Determinants of spatial and temporal coding by semicircular canal afferents.
    Highstein SM; Rabbitt RD; Holstein GR; Boyle RD
    J Neurophysiol; 2005 May; 93(5):2359-70. PubMed ID: 15845995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regeneration of vestibular otolith afferents after ototoxic damage.
    Zakir M; Dickman JD
    J Neurosci; 2006 Mar; 26(11):2881-93. PubMed ID: 16540565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties.
    Gordy C; Straka H; Houston DW; Fritzsch B; Elliott KL
    Dev Neurobiol; 2018 Nov; 78(11):1064-1080. PubMed ID: 30027559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efferent Inputs Are Required for Normal Function of Vestibular Nerve Afferents.
    Raghu V; Salvi R; Sadeghi SG
    J Neurosci; 2019 Aug; 39(35):6922-6935. PubMed ID: 31285300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regional analysis of whole cell currents from hair cells of the turtle posterior crista.
    Brichta AM; Aubert A; Eatock RA; Goldberg JM
    J Neurophysiol; 2002 Dec; 88(6):3259-78. PubMed ID: 12466445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. K
    Spaiardi P; Tavazzani E; Manca M; Russo G; Prigioni I; Biella G; Giunta R; Johnson SL; Marcotti W; Masetto S
    Neuroscience; 2020 Feb; 426():69-86. PubMed ID: 31846752
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efferent synaptic transmission at the vestibular type II hair cell synapse.
    Yu Z; McIntosh JM; Sadeghi SG; Glowatzki E
    J Neurophysiol; 2020 Aug; 124(2):360-374. PubMed ID: 32609559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship between inner-ear fluid pressure and semicircular canal afferent nerve discharge.
    Yamauchi A; Rabbitt RD; Boyle R; Highstein SM
    J Assoc Res Otolaryngol; 2002 Mar; 3(1):26-44. PubMed ID: 12083722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Afferent diversity and the organization of central vestibular pathways.
    Goldberg JM
    Exp Brain Res; 2000 Feb; 130(3):277-97. PubMed ID: 10706428
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ion channels set spike timing regularity of mammalian vestibular afferent neurons.
    Kalluri R; Xue J; Eatock RA
    J Neurophysiol; 2010 Oct; 104(4):2034-51. PubMed ID: 20660422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions between intrinsic membrane and emerging network properties determine signal processing in central vestibular neurons.
    Rössert C; Straka H
    Exp Brain Res; 2011 May; 210(3-4):437-49. PubMed ID: 21374082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphophysiological and ultrastructural studies in the mammalian cristae ampullares.
    Goldberg JM; Lysakowski A; Fernández C
    Hear Res; 1990 Nov; 49(1-3):89-102. PubMed ID: 2292511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological properties of vestibular primary afferents that mediate motor learning and normal performance of the vestibulo-ocular reflex in monkeys.
    Brontë-Stewart HM; Lisberger SG
    J Neurosci; 1994 Mar; 14(3 Pt 1):1290-308. PubMed ID: 8120625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zonal variations in K+ currents in vestibular crista calyx terminals.
    Meredith FL; Rennie KJ
    J Neurophysiol; 2015 Jan; 113(1):264-76. PubMed ID: 25343781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular and network contributions to vestibular signal processing: impact of ion conductances, synaptic inhibition, and noise.
    Rössert C; Moore LE; Straka H; Glasauer S
    J Neurosci; 2011 Jun; 31(23):8359-72. PubMed ID: 21653841
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of otolith receptors in Japanese quail.
    Huss D; Navaluri R; Faulkner KF; Dickman JD
    Dev Neurobiol; 2010 May; 70(6):436-55. PubMed ID: 20155736
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An adenylyl cyclase signaling pathway predicts direct dopaminergic input to vestibular hair cells.
    Drescher MJ; Cho WJ; Folbe AJ; Selvakumar D; Kewson DT; Abu-Hamdan MD; Oh CK; Ramakrishnan NA; Hatfield JS; Khan KM; Anne S; Harpool EC; Drescher DG
    Neuroscience; 2010 Dec; 171(4):1054-74. PubMed ID: 20883745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The septate junction protein caspr is required for structural support and retention of KCNQ4 at calyceal synapses of vestibular hair cells.
    Sousa AD; Andrade LR; Salles FT; Pillai AM; Buttermore ED; Bhat MA; Kachar B
    J Neurosci; 2009 Mar; 29(10):3103-8. PubMed ID: 19279247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A review of synaptic mechanisms of vestibular efferent signaling in turtles: extrapolation to efferent actions in mammals.
    Jordan PM; Parks XX; Contini D; Holt JC
    J Vestib Res; 2013; 23(3):161-75. PubMed ID: 24177348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low-frequency vestibular organ.
    Holt JR; Corey DP; Eatock RA
    J Neurosci; 1997 Nov; 17(22):8739-48. PubMed ID: 9348343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.