These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 21470146)

  • 1. Advances in methods for therapeutic peptide discovery, design and development.
    Pirogova E; Istivan T; Gan E; Cosic I
    Curr Pharm Biotechnol; 2011 Aug; 12(8):1117-27. PubMed ID: 21470146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overview on the current status of virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; Part I.
    Geromichalos GD; Alifieris CE; Geromichalou EG; Trafalis DT
    J BUON; 2016; 21(4):764-779. PubMed ID: 27685895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Current State of Peptide Drug Discovery: Back to the Future?
    Henninot A; Collins JC; Nuss JM
    J Med Chem; 2018 Feb; 61(4):1382-1414. PubMed ID: 28737935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of cytotoxicity of negative control peptides versus bioactive peptides on skin cancer and normal cells: a comparative study.
    Almansour NM; Pirogova E; Coloe PJ; Cosic I; Istivan TS
    Future Med Chem; 2012 Aug; 4(12):1553-65. PubMed ID: 22917245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Building on Success: A Bright Future for Peptide Therapeutics.
    Angell Y; Holford M; Moos WH
    Protein Pept Lett; 2018; 25(12):1044-1050. PubMed ID: 30430932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Venom peptides as therapeutics: advances, challenges and the future of venom-peptide discovery.
    Robinson SD; Undheim EAB; Ueberheide B; King GF
    Expert Rev Proteomics; 2017 Oct; 14(10):931-939. PubMed ID: 28879805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological effects of a de novo designed myxoma virus peptide analogue: evaluation of cytotoxicity on tumor cells.
    Istivan TS; Pirogova E; Gan E; Almansour NM; Coloe PJ; Cosic I
    PLoS One; 2011; 6(9):e24809. PubMed ID: 21949758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatics Approaches for Anti-cancer Drug Discovery.
    Li K; Du Y; Li L; Wei DQ
    Curr Drug Targets; 2020; 21(1):3-17. PubMed ID: 31549592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactive Peptide Natural Products as Lead Structures for Medicinal Use.
    Dang T; Süssmuth RD
    Acc Chem Res; 2017 Jul; 50(7):1566-1576. PubMed ID: 28650175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overview on the current status on virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; Part II.
    Geromichalos GD; Alifieris CE; Geromichalou EG; Trafalis DT
    J BUON; 2016; 21(6):1337-1358. PubMed ID: 28039691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translational aspect in peptide drug discovery and development: An emerging therapeutic candidate.
    Anand U; Bandyopadhyay A; Jha NK; Pérez de la Lastra JM; Dey A
    Biofactors; 2023 Mar; 49(2):251-269. PubMed ID: 36326181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico pharmacology for a multidisciplinary drug discovery process.
    Ortega SS; Cara LC; Salvador MK
    Drug Metabol Drug Interact; 2012; 27(4):199-207. PubMed ID: 23152402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning assisted design of highly active peptides for drug discovery.
    Giguère S; Laviolette F; Marchand M; Tremblay D; Moineau S; Liang X; Biron É; Corbeil J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004074. PubMed ID: 25849257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies.
    Jing X; Jin K
    Med Res Rev; 2020 Mar; 40(2):753-810. PubMed ID: 31599007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-angiogenic peptides for cancer therapeutics.
    Rosca EV; Koskimaki JE; Rivera CG; Pandey NB; Tamiz AP; Popel AS
    Curr Pharm Biotechnol; 2011 Aug; 12(8):1101-16. PubMed ID: 21470139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of emerging genomics and proteomics technologies in cancer drug target discovery.
    Onyango P
    Curr Cancer Drug Targets; 2004 Mar; 4(2):111-24. PubMed ID: 15032664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating medicinal chemistry, organic/combinatorial chemistry, and computational chemistry for the discovery of selective estrogen receptor modulators with Forecaster, a novel platform for drug discovery.
    Therrien E; Englebienne P; Arrowsmith AG; Mendoza-Sanchez R; Corbeil CR; Weill N; Campagna-Slater V; Moitessier N
    J Chem Inf Model; 2012 Jan; 52(1):210-24. PubMed ID: 22133077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The synergistic use of computation, chemistry and biology to discover novel peptide-based drugs: the time is right.
    Audie J; Boyd C
    Curr Pharm Des; 2010; 16(5):567-82. PubMed ID: 19929848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.