BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21470169)

  • 1. Quantitative chemogenomics: machine-learning models of protein-ligand interaction.
    Andersson CR; Gustafsson MG; Strömbergsson H
    Curr Top Med Chem; 2011; 11(15):1978-93. PubMed ID: 21470169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A chemogenomics view on protein-ligand spaces.
    Strömbergsson H; Kleywegt GJ
    BMC Bioinformatics; 2009 Jun; 10 Suppl 6(Suppl 6):S13. PubMed ID: 19534738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active learning for computational chemogenomics.
    Reker D; Schneider P; Schneider G; Brown JB
    Future Med Chem; 2017 Mar; 9(4):381-402. PubMed ID: 28263088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational chemogenomics: is it more than inductive transfer?
    Brown JB; Okuno Y; Marcou G; Varnek A; Horvath D
    J Comput Aided Mol Des; 2014 Jun; 28(6):597-618. PubMed ID: 24771144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized modeling of enzyme-ligand interactions using proteochemometrics and local protein substructures.
    Strömbergsson H; Kryshtafovych A; Prusis P; Fidelis K; Wikberg JE; Komorowski J; Hvidsten TR
    Proteins; 2006 Nov; 65(3):568-79. PubMed ID: 16948162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteochemometrics - recent developments in bioactivity and selectivity modeling.
    Bongers BJ; IJzerman AP; Van Westen GJP
    Drug Discov Today Technol; 2019 Dec; 32-33():89-98. PubMed ID: 33386099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction.
    Liu X; Feng H; Wu J; Xia K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33837771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interplay between molecular modeling and chemoinformatics to characterize protein-ligand and protein-protein interactions landscapes for drug discovery.
    Medina-Franco JL; Méndez-Lucio O; Martinez-Mayorga K
    Adv Protein Chem Struct Biol; 2014; 96():1-37. PubMed ID: 25443953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assay Related Target Similarity (ARTS) - chemogenomics approach for quantitative comparison of biological targets.
    Bieler M; Heilker R; Köppen H; Schneider G
    J Chem Inf Model; 2011 Aug; 51(8):1897-905. PubMed ID: 21761911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction model based on local protein substructures generalizes to the entire structural enzyme-ligand space.
    Strömbergsson H; Daniluk P; Kryshtafovych A; Fidelis K; Wikberg JE; Kleywegt GJ; Hvidsten TR
    J Chem Inf Model; 2008 Nov; 48(11):2278-88. PubMed ID: 18937438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-ligand interaction prediction: an improved chemogenomics approach.
    Jacob L; Vert JP
    Bioinformatics; 2008 Oct; 24(19):2149-56. PubMed ID: 18676415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From machine learning to deep learning: progress in machine intelligence for rational drug discovery.
    Zhang L; Tan J; Han D; Zhu H
    Drug Discov Today; 2017 Nov; 22(11):1680-1685. PubMed ID: 28881183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning-Based Modeling of Drug-Target Interaction Prediction Incorporating Binding Site Information of Proteins.
    D'Souza S; Prema KV; Balaji S; Shah R
    Interdiscip Sci; 2023 Jun; 15(2):306-315. PubMed ID: 36967455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling approaches to quantitative structure-binding kinetics relationships in drug discovery.
    De Benedetti PG; Fanelli F
    Drug Discov Today; 2018 Jul; 23(7):1396-1406. PubMed ID: 29574212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The SGC beyond structural genomics: redefining the role of 3D structures by coupling genomic stratification with fragment-based discovery.
    Bradley AR; Echalier A; Fairhead M; Strain-Damerell C; Brennan P; Bullock AN; Burgess-Brown NA; Carpenter EP; Gileadi O; Marsden BD; Lee WH; Yue W; Bountra C; von Delft F
    Essays Biochem; 2017 Nov; 61(5):495-503. PubMed ID: 29118096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational methodologies for compound database searching that utilize experimental protein-ligand interaction information.
    Tan L; Batista J; Bajorath J
    Chem Biol Drug Des; 2010 Sep; 76(3):191-200. PubMed ID: 20636330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug design of GPCR ligands using physicogenetics and chemogenomics--principles and case studies.
    Frimurer TM; Högberg T
    Curr Top Med Chem; 2011; 11(15):1882-901. PubMed ID: 21470174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Structural Framework for GPCR Chemogenomics: What's In a Residue Number?
    Vass M; Kooistra AJ; Verhoeven S; Gloriam D; de Esch IJP; de Graaf C
    Methods Mol Biol; 2018; 1705():73-113. PubMed ID: 29188559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery.
    Laskowski RA; Swindells MB
    J Chem Inf Model; 2011 Oct; 51(10):2778-86. PubMed ID: 21919503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent trends in artificial intelligence-driven identification and development of anti-neurodegenerative therapeutic agents.
    Kashyap K; Siddiqi MI
    Mol Divers; 2021 Aug; 25(3):1517-1539. PubMed ID: 34282519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.