BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21470253)

  • 21. Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil.
    Lueders T; Pommerenke B; Friedrich MW
    Appl Environ Microbiol; 2004 Oct; 70(10):5778-86. PubMed ID: 15466514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste.
    Sasaki D; Hori T; Haruta S; Ueno Y; Ishii M; Igarashi Y
    J Biosci Bioeng; 2011 Jan; 111(1):41-6. PubMed ID: 20851673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments.
    Li H; Chang J; Liu P; Fu L; Ding D; Lu Y
    Environ Microbiol; 2015 May; 17(5):1533-47. PubMed ID: 25059331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial community dynamics during the early stages of plant polymer breakdown in paddy soil.
    Wegner CE; Liesack W
    Environ Microbiol; 2016 Sep; 18(9):2825-42. PubMed ID: 25712035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Syntrophomonadaceae-affiliated species as active butyrate-utilizing syntrophs in paddy field soil.
    Liu P; Qiu Q; Lu Y
    Appl Environ Microbiol; 2011 Jun; 77(11):3884-7. PubMed ID: 21460111
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and function of the methanogenic microbial communities in Uruguayan soils shifted between pasture and irrigated rice fields.
    Scavino AF; Ji Y; Pump J; Klose M; Claus P; Conrad R
    Environ Microbiol; 2013 Sep; 15(9):2588-602. PubMed ID: 23763330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature impacts differentially on the methanogenic food web of cellulose-supplemented peatland soil.
    Schmidt O; Horn MA; Kolb S; Drake HL
    Environ Microbiol; 2015 Mar; 17(3):720-34. PubMed ID: 24813682
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of substrate concentration on carbon isotope fractionation during acetoclastic methanogenesis by Methanosarcina barkeri and M. acetivorans and in rice field soil.
    Goevert D; Conrad R
    Appl Environ Microbiol; 2009 May; 75(9):2605-12. PubMed ID: 19251888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature-Dependent Network Modules of Soil Methanogenic Bacterial and Archaeal Communities.
    Liu P; Klose M; Conrad R
    Front Microbiol; 2019; 10():496. PubMed ID: 30915063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enrichment and dynamics of novel syntrophs in a methanogenic hexadecane-degrading culture from a Chinese oilfield.
    Cheng L; Rui J; Li Q; Zhang H; Lu Y
    FEMS Microbiol Ecol; 2013 Mar; 83(3):757-66. PubMed ID: 23066709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of acetate-utilizing Bacteria and Archaea in methanogenic profundal sediments of Lake Kinneret (Israel) by stable isotope probing of rRNA.
    Schwarz JI; Lueders T; Eckert W; Conrad R
    Environ Microbiol; 2007 Jan; 9(1):223-37. PubMed ID: 17227427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predominant contribution of syntrophic acetate oxidation to thermophilic methane formation at high acetate concentrations.
    Hao LP; Lü F; He PJ; Li L; Shao LM
    Environ Sci Technol; 2011 Jan; 45(2):508-13. PubMed ID: 21162559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uncultivated Methylocystis Species in Paddy Soil Include Facultative Methanotrophs that Utilize Acetate.
    Leng L; Chang J; Geng K; Lu Y; Ma K
    Microb Ecol; 2015 Jul; 70(1):88-96. PubMed ID: 25475784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Archaeal community structure and pathway of methane formation on rice roots.
    Chin KJ; Lueders T; Friedrich MW; Klose M; Conrad R
    Microb Ecol; 2004 Jan; 47(1):59-67. PubMed ID: 15259270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ.
    Qiu Q; Noll M; Abraham WR; Lu Y; Conrad R
    ISME J; 2008 Jun; 2(6):602-14. PubMed ID: 18385771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Syntrophic-archaeal associations in a nutrient-impacted freshwater marsh.
    Chauhan A; Reddy KR; Ogram AV
    J Appl Microbiol; 2006; 100(1):73-84. PubMed ID: 16405687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Localization of processes involved in methanogenic degradation of rice straw in anoxic paddy soil.
    Glissmann K; Weber S; Conrad R
    Environ Microbiol; 2001 Aug; 3(8):502-11. PubMed ID: 11578311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat.
    Horn MA; Matthies C; Küsel K; Schramm A; Drake HL
    Appl Environ Microbiol; 2003 Jan; 69(1):74-83. PubMed ID: 12513979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Community structure of methanogenic archaea and methane production associated with compost-treated tropical rice-field soil.
    Singh A; Singh RS; Upadhyay SN; Joshi CG; Tripathi AK; Dubey SK
    FEMS Microbiol Ecol; 2012 Oct; 82(1):118-34. PubMed ID: 22587395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field.
    Krüger M; Frenzel P; Kemnitz D; Conrad R
    FEMS Microbiol Ecol; 2005 Feb; 51(3):323-31. PubMed ID: 16329880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.